
each generation. The selection pressure applied in a particular generation is
estimated by subtracting the mean reflectance peak wavelength of all indi-
viduals in a generation from the mean reflectance peak wavelength of the
selected individuals in that generation. In Fig. 2B the response of one gen-
eration is plotted against the cumulative selection differential of the pre-
vious generations. From a linear fit of the data, we obtained the slope, which
is the realized heritability. Graphs for realized heritability and reflectance
data were constructed using GraphPad Prism (v. 6.00; GraphPad Software).

Scale Imaging and Microspectrophotometry. Details are given in SI Materials
and Methods.

Scanning Electron Microscopy. Details are given in SI Materials and Methods.

Numerical Simulations of Reflectance Spectra from Lower Lamina. A standard
thin-film interferencemodel consideringmultiple reflectionswithin a dielectric

film was used to calculate reflectance spectra from the lower lamina of wing
scales (2). Details are given in SI Materials and Methods.
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Scale Imaging and Microspectrophotometry. All scale images were
taken on a Nikon Optiphot 66 microscope in reflectance or
transmission mode using BD Plan 5× to 40× lenses and a Moti-
cam 2500 USB camera at maximum (5-megapixel) resolution.
For the visible spectra the reflectance spectra were taken using
an Ocean Optics HR2000+ spectrometer attached to the Nikon
microscope. For the UV spectra the reflectance spectra were
taken using a home-built microscope including an Oriel Instru-
ments 66902 Xenon Arc Lamp and a Nikon TU Plan Fluor Epi
50× objective lens (numerical aperture = 0.8). Light emitted
from the arc lamp was collected and directed toward the back
aperture of the objective lens through two triplet lenses (aber-
ration corrected from UV to near IR). To avoid tight focusing of
light on the sample, the incident light filled only a central cir-
cular region of the back aperture (with a radius ∼20% of the
back aperture radius). The range of incident angles of light was
15°. A variable aperture, located at a plane conjugated with the
sample plane, was used to control the size of the illumination
spot on the scales. In the single-scale measurements, the re-
flectance spectra were taken from the central lower region of
isolated scales, and the illumination spot was 50 μm in diameter.
Measurements performed on the wing were taken from three
scales and/or wing areas from each of five different individuals,
and measurements for individual scales (taken against a black
background of carbon-coated glass) represent three scales in
each of three different individuals. The reflectance spectrum for
each sample/scale was measured in triplicate at the location marked
by a white asterisk in Fig. 1C and then averaged. ANOVAs to
test for significant differences in mean reflectance between WT
and violet scales were calculated for a variety of reflectance points
along the spectrum using the JMP statistical software package (v.10,
SAS Institute Inc.). The transmittance spectra were taken from
individual scales placed on transparent substrates. All reflectance
and transmittance spectra were subject to normalization against the
Xenon arc lamp emission spectrum. The absorbance spectra were
obtained by −log10[T’(λ)], where T’(λ) represents the measured
transmittance of scales immersed in fluid matching the refractive
index.

Scanning Electron Microscopy. Butterfly wings were soaked in
a mixture of water and alcohol and then were dipped into liquid
nitrogen for ∼5min to ensure thorough freezing. After freezing,
the wings were removed from liquid nitrogen and immediately
sectioned in the region of the color band using a microtome
blade (1). After complete evaporation of the remaining liquid at
room temperature, the wing fragment was pressed gently against
a conductive carbon tape to transfer the scales onto the tape,
which was then attached to the sample mount. The samples were
imaged first with an optical microscope to identify the scale type
and the color-producing regions on the scales; then they were
coated with a layer of gold (∼10 nm) to increase sample con-
ductivity. To obtain cross-sectional scanning electron microscopy
images of the scales, the samples were mounted on a rotation
stage. All scanning electron microscope images were taken using
a SU-70 UHR Schottky (Analytical) FE-SEM (Hitachi High
Technologies America, Inc.) at 2 kV accelerating voltage and 28
μA probe current.

Numerical Simulations of Reflectance Spectra from Lower Lamina. A
standard thin-film interference model considering multiple reflec-
tions within a dielectric film was used to calculate reflectance spectra
from the lower lamina of wing scales (2). In our simulation, the
medium above and below the dielectric layer is air. We used the
wavelength-dependent refractive index (n) of chitin from ref. 3:
n(λ) = A + B/λ2, A = 1.517 and B = 8.80 × 103 nm2. In the
calculation we also took into account the variation in lower
lamina thickness and the range of incident angle of the light in
our measurement. Reflectance spectra were computed first for
different values of film thickness and incident angle of light. The
reflectance spectrum calculated for each incident angle was
weighted by the corresponding solid angle to simulate the mea-
sured spectrum for one value of lamina thickness. The spectra for
the different lamina thicknesses then were averaged by taking
a uniform thickness distribution centered at the population mean
and with a width equal to the 95% confidence interval. The angle
averaging and the thickness averaging reduced the spectral mod-
ulation of the reflectance, and the angle averaging also shifted the
reflectance peak to a shorter wavelength.

1. Bozzola JJ, Russell LD (1999) Electron Microscopy: Principles and Techniques for
Biologists. (Jones and Bartlett, Boston), 2nd Ed.

2. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys
71(7):1–30.

3. Leertouwer HL, Wilts BD, Stavenga DG (2011) Refractive index and dispersion of
butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt
Express 19(24):24061–24066.
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Fig. S1. Scanning electron microscope images of Bicyclus anynana brown wing scales showing basic wing morphology. (A) Section of the wing where the
scales in the top left corner have been removed and the wing membrane (m) is visible. Attached to the membrane are the cover (c) and ground (g) scales, which
alternate each other along rows. (B) A cover scale showing its fine sculpting on the abwing surface. (C and D) Top view and tilt view of a B. anynana WT cover
scale, showing the trabeculae (T) connecting the lower lamina (LL) to the upper lamina, which includes ridges (R), microribs (Mr), and crossribs (Cr).

Fig. S2. Mean reflectance spectra of B. anynana WT and violet-line wing membranes with all scales removed. Error bars represent standard error of the mean
(SEM). Data are the mean of spectra measured in five WT and five violet females. Asterisks represent significant differences between lines.
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Fig. S3. Evolution of violet structural color in B. anynana cover scales. (A) Reflectance spectra of the abwing and adwing surfaces of individual cover scale from
WT and violet-line individuals. Error bars represent SEM. Asterisks indicate statistically significant differences in reflectance for the adwing surfaces of scales.
Pound symbols (#) indicate statistically significant differences in reflectance for abwing scale surfaces (Table S1). (B) Images of abwing (Left) and adwing (Right)
surfaces of individual cover scales from WT (Upper Row) and violet-line (Lower Row) females. (Scale bars: 20 μm.)
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Fig. S4. Top-view scanning electron microscope images of cover (Left) and ground (Right) scales of WT and violet-line B. anynana and violet/blue scales in
Bicyclus sambulos and Bicyclus medontias. The scale structures are similar, and the lower lamina is clearly visible through the windows of the upper lamina.

Fig. S5. Transmission of light in B. sambulos and B. medontias scales. In all transmission images, cover scales are depicted in the upper row, and ground scales
are depicted in the lower row. (A) B. sambulos violet/blue and brown scales. (B) B. medontias violet and brown scales. (Scale bars: 20 μm.)
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Table S1. Comparison of reflectance and absorbance values for the targeted wing area and for individual scales of
B. anynana WT and violet-line females (generation 8) at wavelengths between 350 and 700 nm

λ, nm WT Violet-line F P value WT Violet-line F P value

Reflectance on the wing (∼1 mm2) Reflectance on the individual cover scales on the wing
350 0.14 0.19 4.67 0.0968 0.15 0.12 1.85 0.1851
400 0.11 0.20 22.83 0.0088* 0.10 0.09 0.17 0.6814
450 0.10 0.18 23.06 0.0086* 0.11 0.08 3.63 0.0672
500 0.13 0.17 11.89 0.0261* 0.16 0.09 10.45 0.0031*
550 0.19 0.19 0.00 0.9534 0.23 0.14 11.25 0.0023*
600 0.25 0.22 3.97 0.1170 0.32 0.19 10.33 0.0033*
650 0.33 0.29 6.11 0.0688 0.39 0.27 2.16 0.1802
700 0.43 0.39 3.03 0.1566 0.44 0.34 1.39 0.2717

Reflectance on the individual ground scales on the wing Reflectance on the wing membrane (scales removed)
350 0.29 0.26 0.50 0.4861 0.48 0.39 1.92 0.1770
400 0.27 0.34 3.79 0.0618 0.45 0.44 0.07 0.7951
450 0.25 0.32 6.61 0.0158* 0.44 0.44 0.01 0.9139
500 0.28 0.28 0.00 0.9935 0.44 0.38 1.72 0.1998
550 0.37 0.31 7.50 0.0106* 0.49 0.37 7.13 0.0125*
600 0.47 0.36 16.59 0.0003* 0.54 0.36 8.94 0.0058*
650 0.56 0.44 11.83 0.0088* 0.59 0.40 3.00 0.1215
700 0.61 0.53 3.43 0.1012 0.60 0.46 1.62 0.2395

Reflectance on the individual cover scales - abwing Reflectance on the individual cover scales - adwing
350 0.16 0.18 0.43 0.5232 0.41 0.46 0.19 0.6698
400 0.11 0.12 0.57 0.4609 0.26 0.39 2.51 0.1328
450 0.09 0.10 1.30 0.2707 0.17 0.31 3.61 0.0756
500 0.12 0.10 1.45 0.2463 0.17 0.22 1.13 0.3027
550 0.18 0.14 4.70 0.0457* 0.26 0.22 1.67 0.2149
600 0.23 0.19 3.14 0.0955 0.32 0.27 4.88 0.0421*
650 0.27 0.24 15.58 0.0169* 0.36 0.31 31.25 0.005*
700 0.32 0.27 14.35 0.0193* 0.40 0.39 0.12 0.7507

Reflectance on the individual ground scales - abwing Reflectance on the individual ground scales - adwing
350 0.27 0.29 0.19 0.6652 0.37 0.38 0.03 0.8557
400 0.19 0.28 5.23 0.0362* 0.27 0.44 6.62 0.0204*
450 0.15 0.23 5.78 0.0287* 0.20 0.37 14.29 0.0016*
500 0.15 0.18 1.66 0.2160 0.16 0.23 5.88 0.0275*
550 0.20 0.17 2.20 0.1571 0.19 0.18 0.17 0.6818
600 0.27 0.20 8.25 0.0111* 0.25 0.19 1.42 0.2513
650 0.34 0.26 30.92 0.0051* 0.31 0.27 1.82 0.2485
700 0.41 0.34 6.60 0.0621 0.38 0.35 0.69 0.4520

Absorbance individual cover scales Absorbance individual ground scales
350 0.21 0.16 2.47 0.1909 0.19 0.13 3.17 0.1496
400 0.26 0.21 1.66 0.2670 0.21 0.16 2.47 0.1911
450 0.25 0.20 1.13 0.3477 0.19 0.14 2.14 0.2171
500 0.22 0.17 1.22 0.3313 0.17 0.11 3.46 0.1366
550 0.20 0.16 0.98 0.3789 0.16 0.09 6.17 0.0679
600 0.17 0.14 0.63 0.4710 0.15 0.07 9.39 0.0375*
650 0.14 0.11 0.49 0.5228 0.13 0.06 10.13 0.0334*
700 0.11 0.09 0.54 0.5040 0.12 0.05 10.09 0.0337*

Measurements on individual scales were done both to scales attached to (reflectance) and removed (reflectance and absorbance)
from the wing. ANOVA was used to test for significant differences in mean reflectance or absorbance between WT and violet lines. F
statistics and associated P values are reported.
*P < 0.05.
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