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ScienceDirect
Secondary sexual traits are those traits other than the primary

gametes that distinguish the sexes of a species. The

development of secondary sexual traits occurs when sexually

dimorphic factors, that is, molecules differentially produced by

primary sex determination systems in males and females, are

integrated into the gene regulatory networks responsible for

sexual trait development. In insects, these molecular

asymmetric factors were always considered to originate inside

the trait-building cells, but recent work points to external

factors, such as hormones, as potential candidates mediating

secondary sexual trait development. Here, we review examples

of the different molecular mechanisms producing sexually

dimorphic traits in insects, and suggest a need to revise our

understanding of secondary sexual trait development within

the insect lineage.
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Introduction
With the origin of male and female sexes within a species,

associated with differential investment in sperm and

eggs, came the origin of secondary sexual traits [1]. From

an evolutionary point of view, these are sexually dimor-

phic traits other than the primary gametes that evolved

secondarily in order to improve the chances of each sex to

survive and reproduce [2�]. They encompass a suite of

traits from the external genitalia, to courtship behaviours,

to any other sex-specific morphological, physiological, or

behavioural trait that maximizes the fitness of each sex

and distinguishes one sex from the other.

Sexually dimorphic traits are quite prevalent in the animal

kingdom, yet, knowledge about the molecular mechanisms
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that give rise to such diversity remains poorly understood.

It was long believed that sex differentiation in vertebrates

proceeded via steroid hormones secreted from the devel-

oping gonads [3–5], while sex determination and differen-

tiation in insects proceeded in a cell-autonomous manner

by read-outs of the sex chromosomes [6�,7]. However,

accumulating evidence challenges this dichotomy and

suggests that sex differentiation in vertebrates and insects

could be occurring via both cell-autonomous and non-

autonomous hormonal mechanisms [2�,8,9]. This largely

changes our perspective of the development of sex specific

traits across lineages and highlights possible additional

mechanisms that explain the enormous diversity of sexu-

ally dimorphic traits seen in insects (Figure 1). In this

review, we concentrate on the development of secondary

sexual traits in insects. We begin with a brief overview of

the different primary sex determination mechanisms in

insects, which provide the first molecular asymmetries

cuing the development of secondary sexual traits. We then

highlight the different molecular mechanisms by which

these dimorphic traits are determined. Finally, we propose

the need to consider both cell-autonomous and non-au-

tonomous mechanisms as equally probable processes that

govern the formation of secondary sexual traits in insects.

Sex determination systems in insects
A common theme in all the insect sex determination

systems examined till date is that different initiation

signals converge on similar downstream regulators of

primary, as well as secondary, sexual trait development

[10�,11,12] (Figure 2). These downstream regulators are

highly conserved across animal lineages and belong to the

Doublesex/mab-3 related transcription factor (Dmrt) fam-

ily [reviewed in [11,13]].

In Drosophila melanogaster, sex determination begins with

the different number of X chromosomes in males and

females. A higher expression level of several X-linked

activating transcription factors leads to the activation of

Sex-lethal in females, the primary sex determination signal

[reviewed in [14]], whereas in males, this gene remains

off. This differential activation of Sex-lethal leads to sex-

specific differences in the splicing of downstream pro-

ducts in the sex determination pathway like transformer
(tra) and the transcription factor doublesex (dsx) [15,16]

(Figure 2).

In the honeybee, Apis mellifera, sex is determined by a

haplo-diploid mechanism dependent on the complementa-
ry sex determination (csd) gene. This multi-allelic gene
www.sciencedirect.com
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Sexually dimorphic traits among insects. (a) Male and female stalk-eyed fly. Males have longer eyestalks than females (Photo credit: Mark W

Moffett). (b) Male (left) and female Junonia orithya showing sexually dimorphic colours and patterns (Photo credit: SK Khew and Horace Tan). (c)

The two sexes of the Western Hercules Beetle (Dynastes granti) with males having large horns as compared to females (Photo credit: Alex Wild).

(d) Sexually dimorphic giraffe weevil (Trachelophorus giraffa) where males display much longer necks (Photo credit: André De Kesel). (e)

Damselflies (Ischnura senegalensis) showing sexually dimorphic colouration, with orange females and blue males (Photo credit: Vivek Sarkar).
occurs in the sex determination locus (SDL) of honeybees

and is not sex-specifically spliced. Instead, females who

are always heterozygous at this locus, produce functional

csd proteins while males, either hemizygous or homozy-

gous, produce non-functional csd proteins which lead to

default male development [17]. The feminizer ( fem) gene,

a paralog of csd, also located in the SDL, is the down-

stream target of csd proteins in females. fem has sequence

similarity to D. melanogaster tra, and, like tra, is also sex-

specifically spliced into a functional female protein and a

non-functional male protein [18]. The female protein

isoform of fem maintains female specific development

by splicing dsx in a sex-specific way [19] (Figure 2).

Likewise, in the silkworm Bombyx mori, sex determina-

tion occurs via genes contained on the sex chromosomes.

ZW females have active fem piRNA synthesis, coded for

in the W chromosome, which is absent in ZZ males. This

piRNA leads to feminization by preventing the transla-

tion of a masculanization gene, masc, present on the Z

chromosome. In the absence of this fem piRNA, male

development occurs [20��]. Male and female develop-

ment occur downstream of this process, again via sex-

specific splicing of dsx [20��,21] (Figure 2).

Development of secondary sexually dimorphic
traits
To understand the development of secondary sexual traits

it is necessary to understand trait development integrated

with knowledge of primary sex determination mecha-

nisms. This includes investigating molecular asymmetries,
www.sciencedirect.com 
that is, sexually dimorphic factors that result from these

early sex-determining mechanisms, which can later affect

the development of other traits in the same organism.

The development of sexually dimorphic traits appears to

be controlled by non-sex-specific temporal and spatial

factors interacting with sexually dimorphic factors [22].

Until recently, the sexually dimorphic factors involved

were considered to be sex-specific hormones in verte-

brates and cell-autonomous factors, such as the Dmrt
transcription factors discussed above, in insects. Howev-

er, it is becoming evident that both these mechanisms

regulate secondary sexual trait development across ani-

mal lineages [2�,9]. More specifically, the role of hormonal

control in insects has been overlooked, as detailed below.

Sex-specific behaviours and physiologies
In insects, sex-specific behaviours and physiologies such

as courtship dances, songs, and pheromones, play impor-

tant roles in reproduction. Most of the knowledge on the

molecular mechanisms that govern these traits comes

from studies of D. melanogaster. The discovery of fruitless
( fru) in D. melanogaster in the 1960s led to the identifica-

tion of a bifurcation in the sex-determination pathway

and the notion that sex-specific fru expression in neural

tissues was sufficient to direct sexually dimorphic beha-

viours [23,24]. Cell-autonomous fru male (FruM) expres-

sion can create sexually dimorphic neural circuits [25,26],

that can lead to sex-specific behaviours in response to the

same stimulus. For example, the male pheromone cVA,

when bound to its odorant receptor, leads to courtship
Current Opinion in Insect Science 2016, 17:40–48
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Figure 2
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An overview of the primary sex-determination pathways of the fruitfly Drosophila melanogaster, the honeybee Apis mellifera and the silkworm

Bombyx mori. Despite diversity in the top regulators of the different pathways, they all lead to sex-specific splicing of the conserved downstream

regulator doublesex. ImpM: male isoform of the Bombyx mori homolog of IGF-II mRNA binding protein; Bmpsi: Bombyx mori homolog of P-

element somatic inhibitor. Refer to text for details of the pathways.

Source: Figure modified from Ref. [10].
inhibition in males and sexual receptivity in females [27].

In another example, FruM decreases the threshold for

neural activity in a sexually monomorphic wing vibration

‘song’ circuit, allowing song initiation in males only [28].

The function of fru also seems to be conserved in other

species. For instance in the housefly Musca domestica, sex-

specific splicing of fru occurs as in D. melanogaster, and
Current Opinion in Insect Science 2016, 17:40–48 
FruM is involved in determining male courtship beha-

viours [29]. In the German cockroach, Blattella germanica,

a more basal hemimetabolous insect, fru again appears to

have a role in specifying male mating behaviour [30].

More recently sex-specific behaviours have been con-

nected with dsx as well as fru, and this led to the revision
www.sciencedirect.com
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of fru being the sole sexual dimorphic factor in control of

insect sexual behaviour [31]. In particular, dsx can play a

role in the central nervous system (CNS) in determining

sex-specific behaviours, independently of, or in associa-

tion with fru [32]. For example, the co-expression of

DsxM and FruM in male neurons of the CNS is needed

for complete courtship song production in D. melanogaster
[33]. In addition, two clusters of DsxF expressing neurons

in the CNS of females regulate pre-mating receptivity to

courtship signals, in a fru independent manner [34��].

Lately, hormonal cues have also been associated with sex-

specific behavioural modifications in addition to the cell-

autonomous mechanisms described above (Figure 3a).

For instance, ecdysone signalling was implicated in both

female and male courtship behaviours [35,36]. Females

with lower ecdysteroids courted wild-type males [36], and

males with lower ecdysteroid signalling showed an in-

crease in male-male courtship [35,37]. Moreover, ecdy-

sone receptors are co-expressed in FruM neurons and

their targeted knockdown also leads to increased male–
male courtship along with a decrease in the size of centres
Figure 3
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A schematic of the different cell-autonomous and non-autonomous controls

this review.
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in the male brain that consolidate olfactory information

[38��]. These results point to the influence of ecdysone

signalling in determining sexual orientation in flies but

conclusive details of whether titres of ecdysone vary

between males and females, and the critical time in

development or adulthood when they vary, to determine

sexually dimorphic behaviours are still missing in this

system.

Further hints of non-autonomous control of sexually

dimorphic traits come from the role of the adult fat

bodies, the sex of which affects D. melanogaster behaviours

[39]. takeout, a gene similar in sequence to Juvenile hormone
binding protein, is expressed specifically in male fat bodies

and is activated by both FruM and DsxM either directly

or indirectly [40]. Takeout protein is secreted into the

hemolymph by male fat bodies and acts in the brain, along

with other unidentified molecules, in promoting male

specific behaviour [39]. In addition, sexually dimorphic

locomotory activity in D. melanogaster, that is, in the

different number of active and inactive phases, is con-

trolled by the insulin-signalling pathway in coordination
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 of (a) behavioural and (b) morphological traits in insects discussed in
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with Juvenile hormone (JH). Insulin signalling activates a

key enzyme in the JH producing gland, the corpus allatum,

to promote JH biosynthesis [41]. However, sexually di-

morphic titres of JH in the hemolymph of males and

females have not been directly measured.

Sexually dimorphic morphological traits
There is tremendous morphological diversity in pigmen-

tation, size and shape between male and female insects

(Figure 1). These differences aid in reproduction, camou-

flage, predator avoidance, mate signalling or competition

for mates, and are likely driven by natural and/or sexual

selection [42–44]. So far, most of the molecular mecha-

nisms implicated in these sexually dimorphic traits appear

to be cell-autonomous, and coordinated by the sex deter-

mination pathway (Figure 3b). In D. melanogaster, the local

expression of male and female dsx isoforms interacts with

gene regulatory networks that specify traits to create sex-

specific morphologies. These include the presence of sex

combs in the legs of males, and fewer abdominal segments

and darker abdomens in males. For example, the hox gene

Scr induces a leg-specific expression of dsx in both males

and females but only the DsxM isoform maintains a

positive feedback loop to Scr to regulate the formation

of the male-specific sex combs [45��]. Similarly, the Hox

gene Abdominal-B (Abd-B), expressed in the posterior

abdominal segments of both sexes, regulates dsx expres-

sion positively with no reciprocal feedback. This dsx
expression, however, is sex-biased, with higher expression

in males during a limited period of development, the

mechanistic basis of which is unknown [46]. Both dsx
and Abd-B then control the repression of wingless expres-

sion in the A7 abdominal segment, leading to the loss of

this segment in males only [47]. A final example involves

abdominal pigmentation in flies that depends on direct dsx
and Abd-B regulation of the bab locus, which is a repressor

of pigmentation. In females, bab is directly activated by

Abd-B and DsxF and therefore no pigmentation occurs

[48]. In males, bab expression is repressed by DsxM,

negating Abd-B’s activating effect, and this leads to pig-

mentation in male abdomens [48].

In beetles, sexually dimorphic horn morphologies are

again determined by cell-autonomous expression of dsx
isoforms. These sex-specific isoforms can either repress or

activate horn development depending on developmental

context, and have varying roles in different species

[49,50]. Scr, the hox gene that activates dsx in the sex

combs of flies, was also found to modulate horn develop-

ment in a species- and sex-specific manner in Onthophagus
nigriventris and O. sagittarius dung beetles [51], and it is

conceivable that a regulatory relationship between Scr
and dsx exists in beetle horns, similar to the one regulating

leg sex combs in D. melanogaster [45��].

In contrast to these purely cell-autonomous mecha-

nisms of dimorphic trait development, non-autonomous
Current Opinion in Insect Science 2016, 17:40–48 
mechanisms have been identified regulating sexual traits

in insects (Figure 3b). In D. melanogaster, for example,

male-specific pigment cells that surround the gonad are

recruited from the surrounding fat bodies non-autono-

mously via Wnt2 signalling. Wnt2 expression is sexually

dimorphic in the somatic gonadal cells during the critical

recruitment period, and male-specific Wnt2 expression

leads to recruitment of pigment cell precursors only in

males. This dimorphism appears to be related to dsx
expression though it is unknown if Wnt2 is a direct target

of dsx [52��]. On the other hand, yolk protein synthesis in

the fat bodies is a female-specific trait, which has both

cell-autonomous and non-autonomous inputs controlling

its expression [53–57]. In D. melanogaster, dsx isoforms in

the fat body activate yolk protein synthesis in females and

represses the same synthesis in males [54]. Furthermore,

20-hydroxyecdysone (20E) injections can stimulate yolk

protein synthesis in males [58], indicating that males do

not produce yolk proteins because they may have natu-

rally lower titres of this hormone. However, a difference

in 20E titres between the two sexes in D. melanogaster has

not been conclusively shown [59,60]. In other species like

the housefly M. domesitca, and the mosquito Aedes aegypti,
ecdysteroid signalling also plays a role in yolk protein

synthesis. The vitellogenin gene of A. aegypti, which

codes for a precursor protein of egg yolk, has an enhancer

that is directly bound by the active Ecdysone Receptor in

cell culture [55]. In M. domestica, sexually dimorphic titres

of ecdysteroids exist during the oogenic phase and a

higher level of ecdysteroids in females correlate with

higher levels of yolk proteins in the hemolymph

[61,62]. In addition, a role for dsx has also been implicated

in regulating yolk production in this species [56]. It has

been proposed that the relative involvement of hormones

and cell-autonomous control of yolk–protein synthesis in

different insect species might be related to the different

types of environmental cues and types of egg production

taking place in these species [56].

Potential for hormones as sex-specific factors
in insect secondary sexual trait development
The data highlighted above implicate hormones in the

development of sexually dimorphic traits but it is still

unclear in most insect species whether hormone titres

themselves are asymmetric factors directing sex-specific

secondary trait development. In beetles, sex-specific

horn and mandible morphologies are dictated by dsx,

however, the allometric relationship of these weapon

sizes to body size is modulated sex-specifically via an

interaction between the sex determination pathway and

JH cued by nutrition, leading to different male morphs

[49,63��]. While this interaction led to different horn or

mandible sizes between male morphs, it underlies a

potential to also influence trait size between sexes.

However, sexually dimorphic hormone titres at critical

horn developmental stages have not been measured in

most species.
www.sciencedirect.com
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Figure 4
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Alternative mechanisms for the control of secondary sex-specific trait development in insects. Both cell-autonomous read-outs of the sex

chromosomes, and non-autonomous mechanisms of gene regulation via hormones and their receptors, affect secondary sexually dimorphic trait

development in insects. In the cell-autonomous mechanism, each cell reads information contained in its sex chromosomes which then leads to

sex-specific morphologies. In non-autonomous mechanisms, a dimorphic hormonal titre, determined outside the cell, leads to sex-specific trait

development via asymmetries in hormonal signalling.
Another hormone signalling system that can play a major

role in morphological trait development is the insulin

signalling pathway. As mentioned before, this pathway

has been implicated in sexually dimorphic locomotory

behaviour of D. melanogaster. In addition, male-specific

insulin-like peptides affect male sexual traits in crusta-

ceans, such as the growth of the appendix masculina and

spermatogenesis in the freshwater prawn, Macrobrachium
rosenbergii [64��]. In B. mori, an insulin-like growth factor-

like peptide displays sexually dimorphic titres during

pupal development [65–67]. This peptide is secreted

by the fat body, brain, and gonads and is involved in

development of adult tissues, but has yet to be linked to

secondary sexual trait development in this species [66].

The recent identification of sex-biased ecdysone titres in

adult D. melanogaster and the male biased expression of

the ecdysteroid induced let-7 group of micro-RNAs, has

also implicated hormones in the maintenance of adult

behaviours and sexual fates [68,69]. Such dimorphic titres

in hormones, however, have not been shown during pupal

development, when most of the adult neural circuits and
www.sciencedirect.com 
morphologies are determined. Taken together, these

observations along with the recent identification of a

female-specific sex hormone in crustaceans regulating

secondary sexual trait development in this species

[70�], provide sufficient foundation to hypothesize that

similar insulin-like peptides or other hormones can act in

the development of sex-specific traits in insects.

Conclusions and future work
The examples reviewed here show that the development

of secondary sexual traits in insects can occur either by

groups of cells reading out their sex chromosomes or by

groups of cells responding to systemic signals such as

hormones (Figure 4). The development of sexually di-

morphic traits via dimorphism in hormone synthesis,

however, is not yet established for any insect system.

In order to conclusively implicate hormones in sexually

dimorphic trait development in insects, including beha-

vioural, physiological and morphological dimorphism,

future work should focus on establishing clear sexual

dimorphism in hormone titres between the sexes. This

dimorphism may exist only during a critical stage of trait
Current Opinion in Insect Science 2016, 17:40–48
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development, which may often be of short duration,

thereby necessitating hormone profiling at short and

regular intervals. Following this, hormonal manipulations,

including the use of hormone antagonist in the sex with

higher titres, or hormone gland extirpations, need to be

performed to show a functional role for hormones in

causing trait dimorphism.

Acknowledgements

Work in the lab is funded by grants MOE 2014-T2-1-146 and MOE R-154-
000-602-112 from the Ministry of Education, Singapore, and by the
Department of Biological Sciences at NUS and Yale-NUS College.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest

1. Scharer L, Rowe L, Arnqvist G: Anisogamy, chance and the
evolution of sex roles. Trends Ecol Evol 2012, 27:260-264.

2.
�

Bear A, Monteiro A: Both cell-autonomous mechanisms and
hormones contribute to sexual development in vertebrates
and insects. Bioessays 2013, 35:725-732.

This paper overviews secondary sexual trait determination mechanisms
in vertebrates and insects, and proposes the need to consider both cell-
autonomous and hormonally-cued development in determining sexually
dimorphic traits in both vertebrates and insects.
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