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a b s t r a c t

A favorite wing pattern element in butterflies that has been the focus of intense study in evolutionary
and developmental biology, as well as in behavioral ecology, is the eyespot. Because the pace of research
on these bull’s eye patterns is accelerating we sought to develop a tool to automatically detect and mea-
eywords:
omputer learning
utterfly eyespots
utomatic measurement
yespot recognition

sure butterfly eyespot patterns in digital images of the wings. We used a machine learning algorithm
with features based on circularity and symmetry to detect eyespots on the images. The algorithm is first
trained with examples from a database of images with two different labels (eyespot and non-eyespot),
and subsequently is able to provide classification for a new image. After an eyespot is detected the radius
measurements of its color rings are performed by a 1D Hough Transform which corresponds to histogram-
ming. We trained software to recognize eyespot patterns of the nymphalid butterfly Bicyclus anynana but
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icyclus anynana eyespots of other butterfly

. Introduction

Work in behavioral ecology, in evolutionary and developmen-
al biology and in quantitative and functional genetics of butterfly
ing patterns has been accelerating in recent years but researchers

n these fields still lack an efficient measuring tool to quantify wing
attern variation. Until now most quantifications of wing pattern
ariability performed in butterflies are done by mouse-clicking
andmarks around each of the targeted wing pattern elements,
ither using an image analysis software and a photograph of each
nimal, or using the live animal positioned under a microscope with
camera lucida attachment and clicking on a digitizing pad. Due

o the slowness of manually scoring wing patterns, in experiments
here hundreds of individuals must be scored, only a few of these
ing patterns are usually measured in each individual, and analysis

f the complete set of patterns are seldomly done.
Most of the research on quantitative genetics of butterfly wing

atterns has focused on the circular eyespot patterns that are
resent along the border on the wing in a variety of nymphalid
utterflies including two main model species, the buckeye, Junonia

Precis) coenia, and the squinting bush brown, Bicyclus anynana.
ther nymphalids, however, such as Heliconius species (Joron et al.,
006), and the specked wood, Pararge aegeria (Breuker et al., 2007),
re also targets of similar large-scale quantitative approaches.

∗ Corresponding author. Tel.: +351 218418297.
E-mail address: msilveira@isr.ist.utl.pt (M. Silveira).
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ies were also successfully detected by the software.
© 2008 Elsevier Ireland Ltd. All rights reserved.

esearch questions regarding the eyespot patterns have ranged
rom (1) quantifying the effect of environmental temperature and
ther variables on changes in the size of the eyespots (Kooi et
l., 1996; Roskam and Brakefield, 1996); (2) determining patterns
f eyespot covariation (Allen, 2007; Paulsen and Nijhout, 1993;
onteiro et al., 1994, 1997; Beldade and Brakefield, 2003); (3) dis-

overing the extent to which each of these eyespots is free to vary
ndependently of the others by using artificial selection or muta-
enesis experiments (Beldade et al., 2002; Monteiro et al., 2003);
4) discovering which genes underlie eyespot pattern variation via
inkage association studies (Monteiro et al., 2007; Beldade et al.,
002); (5) estimating the effect of ectopic expression or knock-
own of candidate developmental genes on eyespot morphology
Monteiro and Chen, in prep.); (6) and understanding the evolu-
ion of eyespot number (Monteiro, in press). In order to accelerate
he pace of investigation on butterfly quantitative and functional
enetics we developed software that automatically recognizes and
easures several of the color rings in each of the eyespot patterns

sing digital photographs of wings. We first trained and tested the
oftware on a set of images from dissected wings of B. anynana
ut later tested the software on images from other Bicyclus species
o estimate its flexibility in recognizing eyespot patterns in gen-
ral. This software was specifically developed to recognize circular

atterns on images and can potentially be of broader applicability
ithin or outside the biological sciences. The main goals for the

oftware were to (1) recognize all eyespot pattern elements on an
mage and count the number of eyespots on each wing surface, and
2) measure the radius of the different color rings in each eyespot.

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:msilveira@isr.ist.utl.pt
dx.doi.org/10.1016/j.biosystems.2008.09.004
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the symmetry features proposed in Loy and Zelinsky (2003) but calculated dark and
bright symmetry separately.

We calculate at each radius r two projection images Or+ and Or−, that will
collect evidence of dark and bright symmetry, respectively. To create these images,
for each point p we calculate the pixel p+ that the gradient vector g(p) is pointing
Fig. 1. Diversity of eyespots patterns in Bicyclus anynana. Differe

. Materials and methods

The automatic eyespot recognition software was developed in Matlab 7.1, using
he Image Processing Toolbox and the Statistical Pattern Recognition Toolbox and is

ade available at http://www.isr.ist.utl.pt/ msilveira/eyespot recognition.htm.

.1. The Butterflies

The wings of 250 B. anynana individuals, reared at 28 ◦ C and 80% humidity,
ere separated from the body and photographed using a Nikon SMZ1500 dissecting
icroscope at 3.8× magnification and a digital camera (Qimaging Micropublisher

TV). The wings were lit from left and right sides with a fiber optic double goose-
eck connected to a cold light source. The photos were taken at 300 dpi and are
.74 cm × 4.33 cm in size; they were saved as Tiff files.

.2. Automatic Recognition Software

Our approach for the automatic eyespot recognition was to train a machine
earning algorithm which assigned one of two possible labels (eyespot or non-
yespot) to each image pixel based on measurements obtained in the neighborhood
f that pixel. Those measurements were collected into a feature vector x of length n
nd the algorithm output was based on a discriminant function g(x) that partitions
he feature space Rn into two decision regions:

(x) = wT x + b (1)

here b ∈R and w ∈Rn are the coefficients of the linear discriminant function which
ad to be learned from examples of images with both labels (eyespot and non-
yespot). These example images corresponded to smaller square areas of the original
igital images, including individual eyespots (Fig. 1) or background wing patterns.
he background images were randomly generated throughout the wings in order
o capture the diversity of the wing texture. The function yields positive values for
yespot examples and negative values for non-eyespot. Thus, training examples from
he two different classes are separated by the hyperplane g(x) = wT x + b = 0.

.2.1. Features
The eyespot patterns are approximately circular and formed by concentric rings,

ut they have different sizes, number of rings, brightness values and contrast (Fig. 1).
n the particular case of B. anynana, one of the rings in the eyespots has a distinctive
old color that could be used as a feature but we refrained from using color features
ecause we intend to use the software with other species.

The features we used exploit the fact that the eyespots are circular and symmet-
ic relative to their center. We obtained good results with a very reduced number
f features, which were carefully selected. One set of features measures circular-
ty and is inspired by the convergence index filter (Kobatake and Hashimoto, 1999)

hich was designed to detect rounded regions. This filter measures the degree of
onvergence of gradient vectors in the neighborhood of the pixel of interest. Let p
enote the center pixel of a region R and q denote an arbitrary pixel in R with rela-
ive coordinates from the center pixel q = (k, l). The gradient of image I(q) is denoted
(q) = (gx(q), gy(q)). From gx(q) and gy(q) the gradient magnitude and orientation
an be calculated:

g(q)‖ =
√

gx(q)2 + gy(q)2 (2)

(q) = arctan
gy(q)
gx(q)

(3)

he angle �(q) measures the orientation of the gradient vector g(q) with respect
o the line pq and the degree of convergence of g(q) is given by cos � (Fig. 2a). The
onvergence index output is the average of the convergence indices at all pixels in
:

(p) = 1
M

∑
cos �(q) (4)
q ∈ R

here M is the number of pixels in region R. We adapted the convergence index filter
ecause in our case, the eyespots have both dark and light rings, so some gradient
ectors will point towards the pixel of interest and others will point away from it. In
he first case the values of c(q) will be positive and in the second case they will be

F
c

espots have different sizes, number of rings, color and contrast.

egative. Therefore, we divided the pixels in region R into two sets based on their
ngle �(q):

+ = {q ∈ R| cos �(q) ≥ 0} (5)

− = {q ∈ R| cos �(q) < 0} (6)

e calculated cos �(q) efficiently by using the following normalized dot product:

os �(q) = g(q).v(q)
‖g(q)‖‖v(q)‖ (7)

here v is the vector q − p.
The filter output is multiplied by the gradient magnitude to give more weight

o the more contrasted points. This is done because gradient elements with small
agnitude have less reliable orientation. In addition, the output is scaled by the

otal gradient magnitude in order to obtain a measure adapted to local contrast:

+(p) =

∑
q ∈ R+

‖g(q)‖ cos �(q)

∑
q ∈ R+

‖g(q)‖
(8)

−(p) =

∑
q ∈ R−

‖g(q)‖ cos �(q)

∑
q ∈ R−

‖g(q)‖
(9)

nother feature measures radial gradient and was used in Daugman (2004) to local-
ze and recognize a human iris. It is an integrodifferential operator that calculates
t center coordinates, p, in the image domain, the blurred partial derivative with
espect to increasing radius, r, of the normalized contour integral of I along a circular
rc ds of radius r:

g(r, p) = G� ∗ ∂

∂r

∫
r,p

I(q)
2�r

ds (10)

he symbol ∗ denotes convolution and G� is a smoothing function such as a Gaussian
f scale �. As our feature we use the average of the radial gradient rg(r, p) computed
or all values of the radii r.

Two additional features exploit the pattern’s gradient symmetry relative to the
enter point. Using symmetry as a feature is important to avoid false detections from
he curved chevron patterns present along the border of the wing. Moreover, this
ymmetry feature is useful to detect eyespots with elliptic shapes. We used one of
ig. 2. Gradients and angles used in the circularity and symmetry features. (a) cir-
ularity; (b) symmetry.

http://www.isr.ist.utl.pt/~msilveira/eyespot_recognition.htm
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Fig. 3. Example of wing/background separation. Only the pixels shown in w

o, a distance r away from p and the pixel p− that the gradient is pointing directly
way from, as shown in fig. 2 b. The coordinates of these pixels are given by

+(p) = p + round

(
g(p)∣∣h(p)
∣∣ r

)
(11)

nd

−(p) = p − round

(
g(p)∣∣g(p)
∣∣ r

)
(12)

here ‘round’ rounds each coordinate to the nearest integer.
The projection images are initially zero. Then, Or+ is increased by 1 at all points

+ while Or− is decreased by 1 at all points p−:

r+(p+(p)) = Or+(p+(p)) + 1 (13)

r−(p−(p)) = Or−(p−(p)) − 1 (14)

he symmetry contribution, either bright or dark, at radius r is defined as the con-
olution:

r = Fr ∗ Ar (15)

here

r = sgn(Õr (p))

(
Õr (p)

kr

)˛

(16)

nd

r (p) =
{

Or (p) ifOr (p) < kr

kr otherwise
(17)

n this equation Or stands for either Or+ or Or−, Ar is a two-dimensional Gaussian,
is the radial strictness parameter, and kr is a scaling factor that normalizes Or

cross different radii. This result is contrast independent. However, when applying
his orientation-based formulation we ignore very small gradients that tend to add
oise to the result. More details can be found in Loy and Zelinsky (2003).

These features are calculated at every candidate image pixel p and with different
izes for region R. We used square regions with 31 × 31, 51 × 51 and 71 × 71 pixels.

.2.2. Machine Learning Algorithm
We used a support vector machine (SVM) (Vapnik, 1998) classifier using the

eatures described above. This classifier finds the separation hyperplane that max-
mizes the separation margin between the two classes (eyespot and non-eyespot)
nd has proved to be one of the best in terms of generalization ability. The hyperplane
s found by minimizing the following cost function:

(w) = 1
2

‖w‖2 (18)

ubject to the constraints: wT xi + b ≥ 1 for the positive examples, and wT xi + b ≤ −1
or the negative ones. The solution will only depend on a subset of the training

xamples which are the support vectors.

Since in practice the training examples may not be completely separated by a
yperplane, slack variables �i ≥ 0 can be introduced to relax the separability con-
traint:

T xi + b ≥ 1 − �i (19)

t
b
c
w
u
m

re scanned. (a) Original image; (b) corresponding wings/background mask.

ccordingly, the cost function becomes:

(w) = 1
2

‖w‖2 + C

P∑
i=1

�i (20)

here C is a user defined, positive regularization parameter. Increasing the value of
increases the cost of misclassifying training examples and creates a more accurate
odel that may not generalize well. In all our experiments we used C = 1.

Other more common approaches for circle detection such as the Hough Trans-
orm (HT) (Duda and Hart, 1972) or even HT variants especially designed for
oncentric circle detection (Silveira, 2005) were found unsuitable because many
yespots are very close to each other which generated numerous false peaks in the
T center accumulator in the regions between neighboring eyespots.

.2.3. Preprocessing
The number, position and also size of the eyespots is variable so the images

ave to be scanned not only at different locations but also at different scales. To
educe computation, the wing region was separated from the background prior to
canning. This separation was based on the hue values of the image. Noting that the
ackground was blue for all the images in our data set we extracted image pixels
ith hue values between 0.5 and 0.6, which correspond to blue colors. After that, a
orphological flood fill operation was performed on the binary image in order to

liminate holes in the wings.

.2.4. Postprocessing
The method described above is not sensitive enough to small changes in eye-

pot location or size. Therefore, multiple detections will usually occur around each
yespot in a scanned image and the same will happen for false detections. In order
o reduce this effect we performed non-maxima suppression using the value of
he discriminant function g(x) at neighboring scales and locations. This operation
uppresses all detections except for the ones corresponding to local maxima of the
iscriminant function.

.3. Hand Measurements

In order to compare the performance of our automatic eyespot detection and
easuring software with detections done by eye and measurements done by hand,
e scored the total number of eyespots present on each of the 250 images by eye

nd measured several eyespot diameters using Object Image 1.62 software (Vischer
t al., 1994). This software allows users to obtain linear measurements (in this case
yespot diameters) by calculating the distance between two xy coordinates that were
mouse clicked” on a Tiff image by hand. Ten linear measurements were obtained on
ll forewings: the diameter of the black disc and gold ring for both the anterior and
osterior eyespots on the dorsal and ventral surfaces, and the diameter of the white
upils of the posterior eyespots on the dorsal and ventral surfaces. In addition, we
btained x, y coordinates for the center of each eyespot.

.4. Automatic Scoring

We developed a method to compare the automatically detected eyespots with

he manually scored eyespots. For each manually scored eyespot we identified the
est matching automatically detected eyespot by comparing first their x,y center
oordinates and then by testing whether the area of overlap of the color rings
as greater than a fixed threshold T. Detections that were not matched to man-
ally scored eyespot were counted as false positives, and detections that matched
anually scored eyespots (via their x, y coordinates) but where the overlap of area
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ig. 4. Some examples of detection results on B. anynana. Green squares indicate c
1 eyespots, 10 were true eyespots and one detection was a false positive. In additi
ositives occur mainly along the border of the wing where curved chevron patterns

easurements were below the set threshold were also counted as false positive.
anually scored eyespots that were not matched with any detected eyespot were

ounted as missed detections.
We used 2500 examples of eyespot images (Fig. 1) and generated 25,000 exam-

les of non-eyespot images to train the recognition algorithm. The non-eyespot
mages were randomly generated throughout the wings, after removing the back-
round portion of the images (Fig. 3).

The proposed classifier was evaluated using twofold cross-validation; the
atabase of images was divided in a random fashion into two subsets of the same
ize, where each subset was used in turn for training and the other for testing.

e calculated the overall true detection rate (TDR) and false positive rate (FPR)
s follows:

DR = TD
GT

(21)

PR = FP
FP + TD

(22)

here TD is the number of true detections, FP is the number of false positives and
T is the total number of eyespots in the database of images.

.5. Eyespot Measurements

After an eyespot is recognized in the image, we proceeded to measure the radii of
ts different color rings. First we obtained the edge points in the eyespot region with
he canny edge detector (Jain, 1989) and for each edge point e = (x, y) we computed

ts radius relative to the center point p = (i, j) using the circle equation:

2 = (x − i)2 + (y − j)2 (23)

e then constructed an accumulator for the radius where each edge point casts
vote on the value of its radius. Concentric circles of different radii (e.g., the
hite pupil, the black disc, the gold ring) will originate different peaks. In order to

e
c
r
t
p

Fig. 5. The effect of non-maxima suppression. (a) Before non-m
detections whereas red squares indicate false positives. (a) The software detected
ere was one missed detection on the ventral surface of the hindwing. (b) The false
resent.

btain sharper peaks, the votes are weighted by the value of the circularity features
escribed above (see Eqs. (8) and (9)). In addition, since larger concentric circles will
lso originate higher peaks in the radius accumulator, each count is divided by the
orresponding radius value.

In order to compare the manual and the automatic eyespot measurements
e calculated the error by subtracting the linear measurements from the auto-
atic measurements and averaging the differences. We tested whether there was
significance difference between the two measurements using a Wilcoxon paired

igned-rank test.

. Results

After training the algorithm we evaluated its performance in rec-
gnizing an eyespot with the automatic scoring method described
n Section 2.4. The true detection rate was 96% with 6% of all detec-
ions being false positives (see example detections in Fig. 4). Most
f the false positives occur in the area of the wing periphery where
here are concentric arc ring patterns, the “chevrons”, in butterfly
ing pattern nomenclature (Fig. 4b). Most of the missed detections

orrespond to the smaller eyespots. In fact, if we disregard eyespots
maller than 25 × 25 pixels, our recognition rate increases to 98%
ith 8% false positives. The localization error of the center of the
yespots that were correctly identified was 1.1 pixels. The appli-
ation of the non-maxima suppression described in Section 2.2.4
educed the number of overlapping detections of the same eyespot
o a single detection. This method also reduced the number of false
ositives (Fig. 5). Using methods based on the Hough Transform,

axima suppression; (b) after non-maxima suppression.
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Fig. 6. Receiver operating characteristic (ROC) curves of recognition performance.
The curve labeled grad corresponds to the gradient calculated with horizontal and
vertical central differences and the curve labeled Sobel was produced using the Sobel
operator (Jain, 1989).
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Fig. 7. Detection results obtained with different Bicyclus species other than B.
tems 95 (2009) 130–136

e achieved detection rates of 100% but with unacceptable false
ositive rates, in all cases around 100%.

We also calculated receiver operating characteristic (ROC)
urves showing the tradeoff between probability of true detection
nd false detections, obtained with varying classifier threshold b
see Eq. 1). Since all our features are based on gradient direction,
e compared the ROC curves of our algorithm when two different
ethods were used to calculate the gradient (Fig. 6). One method

sed the gradient calculated with horizontal and vertical central
ifferences and the other one used the Sobel operator (Jain, 1989).

n these ROC curves the false positive rate never reaches 1.0 because
f the non-maxima suppression procedure described in Section
.2.4. These results indicate that the performance of our method is
ot very sensitive to the way the gradient was calculated, although
he gradient calculated with horizontal and vertical differences was
lightly superior.

Finally, in order to evaluate the generalization ability of our soft-
are to detect eyespots, we tested it on images of other butterflies

pecies. Forty five images of different species with eyespots quite
ifferent from B. anynana such as B. dentatus, B. safitza, B. asochis, B.
yperanthus, B. angulosus among several others were tested (Fig. 7).

he detection rate was 67% and the false positive rate was 13%.
aturally, these results are inferior to the ones obtained when the
yespots of B. anynana were used both for training and for testing
he SVM classifier, but they are very promising especially since we

anynana. (a) B. xeneoides, (b) B. auricrudus, (c) B. iccius, and (d) B. safitza.
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ig. 8. Eyespot measurements. (a) Luminance image of an eyespot; (b) correspondi
mposed in red. Three maxima appear corresponding to three concentric circles. Th
he edge of the central white pupil. The identified circles were r = 5, r = 22 and r =

sed so few and such simple features to design our automatic eye-
pot recognition algorithm. In order to get the best performance,
he algorithm should be tested and trained with pictures of the
ame butterfly species.

The training step took around 10 min and testing and measuring
ook approximately 3.5 min per image, running on a conventional
aptop (2GB RAM, Dual Core CPU, 2 GHz). These measurements,
owever, can be done automatically without input from the user.
easurements by hand take approximately one minute and thirty

econds for each specimen, for a total of 11 eyespots and 3 color
ings in each eyespot. The number of clicks per image is 66, which
s rather large and can potentially lead to repetitive strain injury. In
ddition, time savings can be achieved in the future by implement-
ng the current Matlab code in a different language, e.g. C, lending
o faster automatic detections and measurements.

.1. Eyespot Measurement Results
The edges of the correctly detected eyespots in the B. anynana
mages were used to build a Hough Transform accumulator where
he radii of its color rings were measured (Fig. 8). We compared

able 1
verage error and error standard deviation (both in pixels) of manually and auto-
atically measured eyespot color radii.

Error Std. Dev.

hite pupil −0.81 0.95
lack disk 0.24 2.12
old ring 0.02 2.52

m
p
b

4

a
i
a
w
s
d

ge map; (c) corresponding radius accumulator; (d) the measured circles are super-
axima map to the edges of the different color rings. The strongest peak represents
xels in radius.

he manual measurements of the eyespot diameters with the auto-
atic ones and found very small differences between the two

Table 1).
Most of the differences between the manual and the automatic

easurements are due to the assumption that the three circles are
oncentric which is just an approximation. In fact, many eyespots
re elliptic rather than circular. The greater error standard deviation
btained for the gold ring is due to this being the most elliptic of the
ings (the outer ring), and also the one displaying the least contrast
ith the background color immediately following its outer edge.

We tested whether there was a significant difference between
adius measurements when done by hand or automatically using a

ilcoxon paired sign-rank test. While the white pupils measured
y hand were significantly larger than those measured automat-
cally (Z = −10.44; p = 0.000), the measurements for the black
nd gold ring were comparable (black: Z = −1.25, p = ns;gold : Z =
0.186, p = ns). Our interpretation of these results is that the auto-
atic pupil measurements are more accurate as it is difficult to

recisely click on the pupil coordinates by hand, and apparently we
ias our manual measurements by “enlarging” the pupil diameters.

. Conclusions

Our automatic eyespot recognition software proved to recognize
nd identify around 96% of the total number of eyespots present on

mages of the dorsal and ventral wing surfaces of the butterfly B.
nynana. Furthermore the software recognized the outlines for the
hite pupil, the black disc, and the gold ring of scales in each eye-

pot, across a range of sizes. The software also performed well in
ealing with eyespot variation in outline crispness, brightness, and
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ontrast levels with background pattern. The radii measurements
one on the basis of the color ring outlines are comparable to the
anual diameter measurements. Future developments will include

he implementation of this software in a user-friendly web inter-
ace and the inclusion of features that will allow users to correct
he false positive detections and manually point to eyespots that
ere not detected by the software. In order to scale for overall wing

ize, the user interface will also include the ability to obtain linear
easurements between two mouse clicked xy coordinates or to

btain automatic wing area measurements. Once these features are
mplemented, this software is likely to speed the pace of research
n the evolution and development of eyespot patterns in butterfly
ings.
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