

Probe Preparation for in-situ Hybridization

Design of primers for amplification of DNA fragment of interest.

- 1. Copy the sequence of interest and paste it into the box on the webpage: <u>http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi</u>.
- Under the 'General Setting' tab change the values: Primer Tm: - Min: 55; Max: 65 Primer GC%: - Min: 45; Opt: 60; Max: 60 Max Tm Difference: - 3 Under 'Advanced Settings' tab GC Clamp: 2
- 3. Click on the 'Pick Primers' tab in the top right corner.
- 4. Select the best set from the list of primers.

Amplification of DNA fragment of interest

- 5. Resuspend the lyophilized primers using molecular grade water to make a stock solution of 100 ng/μ l. Prepare a working solution of 10 mM as described above.
- 6. Add the following reagents in a 200 μ l PCR tube:

Table. Reaction mixture for amplification of DNA of interest.		
Reagents	Volume (µl)	
2X PCRBIO Taq Mix Red	12.5	
Gene F	1	
Gene R	1	
Template (gDNA/plasmid/cDNA)	1	
Molecular grade water	9.5	

ACRITICAL STEP: Prepare at least 5 tubes in order to identity the most optimal annealing temperature in a gradient PCR reaction.

7. Setup the gradient PCR reaction with following conditions:

Table. PCR condition for amplifying DNA of interest.			
Temperature (°C)	Time (secs)	Number of cycles	
95	60	1	
95	15 J		
Gradient (55-65)	15	40	
72	15 J		
4	∞	1	

8. Run the reaction mixture in 1% agarose gel for 30 mins. **OPAUSE STEP:** The PCR reaction mixture can be stored at 4°C overnight.

Cloning of amplified DNA fragments (using pGEM®-T Vector System)

1. Add the following reagents in a 1.5 ml microcentrifuge tube (ligation mixture):

Table. Reaction mixture for ligating DNA of interest to plasmid.		
Reagents	Volume (µl)	
2X Rapid ligation buffer	5	
pGEM®-T vector	0.5	

Amplified DNA (200ng/µl)	0.5
T4 DNA ligase	1
Molecular grade water	3

- 2. Incubate the reaction mixture at 4°C for 16 hrs.
- 3. Take out 1 vial of competent cells and keep the tube on ice for 15 mins.
- 4. Transfer 5 µl of ligation mixture into the competent cell tube and tap gently to mix the solution.
- 5. Leave the mixture on ice for 30 mins.
- 6. Heat shock the cells by transferring the tube into a water bath at 42°C for 45 secs.

ACRITICAL STEP: Be careful not to exceed the heat shock step above 45 secs.

7. Transfer the tube into ice and leave it for 2 mins.

_ . . _

- 8. Add 500 μl of autoclaved LB broth and incubate the cells in bacterial incubation chamber at 37°C with shaking speed of 225 rpm for 2 hrs.
- 9. Centrifuge the tube at 3000 rpm for 4 mins.
- 10. Inside a biological safety cabinet add the following reagents to an LB agar plate:

.

Table. Reagents for the screening of positive bacterial colonies.		
Reagents	Volume (µl)	
IPTG	25	
X-GAL	25	
Ampicillin	25	

.

- 11. Spread the reagents on the plate using glass beads and let the plate dry inside the hood.
- 12. Add 50 μl of supernatant from step 9 and spread across the plate using the glass beads.
- 13. Once dried, seal the plate using parafilm and incubate the plate inside a bacterial incubator at 37°C for 14 hrs.

Colony PCR on transformed clones

1. In a 1.5 ml microcentrifuge tube add 10 μ l molecular grade water. Pick the transformed white colonies and transfer them into the tube. Vortex gently to homogenize the colony.

ACRITICAL STEP: Prepare at least 10 clones for testing.

2. Add the following reagents in 200 μl PCR tubes:

Table 21. Reaction mixture to verify DNA inserted into plasmid.		
Reagents	Volume (µl)	
2X PCRBIO Taq Mix Red	12.5	
M13F primer	1	
M13R primer	1	
Homogenized clone	1	
Molecular grade water	9.5	

3. Setup the PCR reaction with the following conditions:

Table. PCR settings to amplify	v inserted DNA along with	the M13 region of the plasmid
Tuble , I ex settings to unphi		the will region of the plasmid.

Temperature (°C)	Time (secs)	Number of cycles
95	60	1
95	15 J	
57	15 -	30
72	15 J	
4	∞	1

- 4. Run the reaction mixture in a 1% agarose gel for 30 mins and note down the colonies with a single band of the expected size, e.g., those that don't have an empty plasmid.
- 5. Inside a laminar hood add 5 μ l of Ampicillin stock solution into a test tube with 5 ml LB broth. Transfer 5 μ ls of homogenized cells from step 1. Do this step for every positive colony.
- 6. Incubate the tubes in a bacterial incubation chamber at 37°C and 225 rpm for 14-16 hrs.

Isolation of plasmids from transformed clones (using GeneJET Plasmid Miniprep Kit)

- 1. Harvest the cells in a 1.5 ml centrifuge tube at 3000 rpm for 5 mins (pellet can be stored in 40% glycerol at -80°C for future use).
- 2. Discard the supernatant and resuspend the pellet in 250 μ l of resuspension buffer.
- 3. Add 250 µl of lysis buffer and mix by inverting the tube 6-10 times.
- 4. Add 350 µl of neutralization buffer and mix by inverting the tube 6-10 times.
- 5. Centrifuge at 14000 rpm for 5 mins and transfer the supernatant to GeneJET spin column.
- 6. Centrifuge the column at 14000 rpm for 30 secs.
- 7. Add 500 μl of wash buffer and centrifuge at 14000 rpm for 30 secs. Discard the flow through and repeat this step one more time.
- 8. Centrifuge the empty column at 14000 rpm for 1 min.
- 9. Transfer the column to a 1.5 ml microcentrifuge tube and add 20 μ l of elution buffer or molecular grade water. Incubate the mixture at room temperature for 3 mins.
- 10. Centrifuge the column at 14000 rpm for 1 min and measure the concentration of plasmid using Nanodrop.
 - **• PAUSE STEP:** Prepare a working concentration of 100ng/µl. The purified plasmid can be stored at 4°C for over one month. For long-term storage use a -20°C freezer.

Perform orientation check on the isolated plasmid

1. Perform PCR with following set of primers to see which one is giving band.

1	2	3	4
M13F	M13F	M13R	M13R
Gene F	Gene R	Gene F	Gene R

Orientation 1

M13F	Gene F		
		Gene R	M13R

You will observe band with Primer set 2 and 3. Use SP6 polymerase for AS probe.

Orientation 2

You will observe band with Primer set 1 and 4. Use T7 polymerase for AS probe.

M13 amplicon preparation for probe

1. Add the following reagents in 200 μ l PCR tubes:

Table. Reaction mixture to verify DNA inserted into plasmid.		
Reagents	Volume (µl)	
2X PCRBIO Taq Mix Red	12.5	
M13F primer	1	
M13R primer	1	
plasmid	1	
Molecular grade water	9.5	

2. Setup the PCR reaction with the following conditions:

Temperature (°C)	Time (secs)	Number of cycles
95	60	1
95	15 J	
57	15	30
72	₁₅	
4	∞	1

Run the reaction mixture in a 1% agarose gel for 30 mins.

RNA probe preparation

1. Add the following reagents in 1.ml tube:

Reagents	Volume (µl)
10x RNA polymerase buffer	2.5
Dig Mix	2.5
M13 amplified DNA	3
T7/SP6 polymerase	2
Ribolock	0.5
Molecular grade water	14.5

2. Incubate the tube at 37°C for 2 hrs.

Purification of RNA probe (via ethanol precipitation)

- 3. Add 80 μ l of molecular grade water to the reaction tube from the previous step to raise the volume to 100 μ l.
- 4. Add 10 µl of 3M NaOAc, 10µl Linear acrylamide, and 200 µl of 100% ethanol.
- 5. Vortex the mixture for 10 secs and store at -20°C for 15-20 mins.
- 6. Centrifuge the mixture at 4°C, 14000 rpm for 15 mins.
- 7. Carefully remove the supernatant.**A**CRITICAL STEP: Be very careful not to disturb the pellet.
- 8. Dry the sample in a vacuum concentrator and add 20 μl of molecular grade water.
- 9. Prepare a stock concentration of 600 ng/μl by adding additional water (after a Nanodrop reading) and store aliquots at -20°C.

OPAUSE STEP: RNA can be stored at -20°C for over 1 year.