

Supplementary Materials

Figure S1. Venation patterns in insects. (A) Comstock-Needham hypothetic venation of primitive insects (redrawn from (Comstock and Needham, 1898)), **(B)** Wing venation of *Drosophila melanogaster* (redrawn from (Blair, 2007)), **(C)** Larval forewing venation and **(D)** hindwing venation of *Bicyclus anynana* butterflies. Larval wings of *B. anynana* were drawn based on methylene blue staining's (**Fig. S5**). **(E)** Adult forewing and **(F)** hindwing venation of *B. anynana*.

Figure S2. Venation pattern in adult butterflies. (A and C) *Bicyclus anynana* forewing, (B and D) and hindwing. (E and G) *Pieris canidia* forewing, (F and H) and hindwing. (A, B, E and F) Adult wings with scales. (C, D, G, and H) Adult wings with scales removed.

Figure S3. Molecular mechanism involved in venation patterning in Drosophila melanogaster. (A) Larval wing disc of D. melanogaster. During the larval stage, the wing is divided into two populations of immiscible cells belonging to the Anterior (A) and Posterior (P) compartments. The boundary where these two-populations meets is referred to as the Anterior-Posterior (A-P) boundary (marked by the gray line). (B) Venation patterning is initiated by the transcription factors En and Inv in the posterior compartment that activate expression of hh while suppressing Hh signaling. Hh is a short-range diffusible morphogen. A small amount of Hh diffuses into the anterior compartment where the presence of Ci activates the BMP ligand dpp. Hh also activates the genes *vein* and *knot* overlapping the expression of *dpp*. Knot inhibits Egfr signaling at the R4+5 (L3) and M1 (L4) intervein cells. The veins R4+5 (L3) and M1 (L4) form at the anterior and posterior boundary of the *dpp* and *vein* expression domain due to activation of Egfr signaling via Vein protein. (C) Dpp protein then acts as a long-range morphogen activating both spalt (sal) and optomotor-blind (omb) at high concentrations, and only omb when the concentration falls below the sal-inducing threshold. (D) The vein R2+3 (L2) forms by the interaction of AI, Opx and Sal. Dpp activates all three transcription factors at different concentration thresholds. Al activates the R2+3 (L2) vein specific gene knirps, Sal represses opx, and Opx and Sal suppresses knirps. (E) The vein Cu1 (L5) forms at the boundary of Omb and Brinker where the Cu1 (L5) specific gene abrupt is expressed. (F) The final step of venation patterning involves expression of Rho in the vein cells and Bls in the intervein cells.

Figure S4. Expression of *decapentaplegic* (*dpp*) and the effect of Dorsomorphin and Dpp CRISPR on the wings of *Bicyclus anynana*. (A-C) *dpp* is expressed in two domains in the larval wings. (D) Adult descaled Wings of a control individual injected with DMSO. (E-G) Dorsomorphin affects the wing size and venation (black arrow). (H) Dpp CRISPR individual with ectopic and missing vein (black arrow).

Figure S5. Expression of Spalt (Sal) and Engrailed /Invected (En/Inv); and function of *sal* in *Bicyclus anynana*. (A, C, and E) En/Inv staining at different stages of larval wing growth. (B, D, and F) Sal staining at different stages of wing growth. (G) Merged channels of Sal and En/Inv. (H) Closeup of Sal expression showing the anterior boundary of the fourth Sal domain (yellow arrowhead and dotted yellow line). (I) T7 endonuclease assay on *sal* guide and Cas9 injected individuals. Sample 2 with T7 endonuclease added shows two shorter DNA bands indicating cleavage of the PCR product. (J) A WT fifth instar larva. (K) Pigmentation defects on sal CRISPR larva. Spalt has been implicated to be involved in the development of black pigment on the eyespots of *B. anynana* butterflies. (L) Severe adult wing patterning defects in some individuals were observed. (M-X) Venation defects in *B. anynana* descaled adult forewings and hindwings.

Figure S6. Expression of Optix (Opx) and Aristaless (AI); and function of opx in *Bicyclus anynana.* Opx expression at different stages of larval wing growth (**B**, **D**, and **F**). (**G and H**) Al expression at different stages of larval wing growth. (**B**, **D**, and **F**). (**G and H**) Al expression at different stages of larval wing growth. WT descaled adult (**I**) forewing and (**J**) hindwing. Optix CRISPR (**K**) forewing and (**L**) hindwing. No defects in venation are observed. (**M-Q**) Optix CRISPR individuals with loss of scales with ommochrome (orange) pigment. (**R**) Optix expression in the pupal wings. (**S and T**) Deletions in the regions targeted for *optix* CRISPR (red boxes). Black arrow: orange scales in the anterior margin of the forewing overlap the anterior expression of Optix in the larval wing disc. Red arrow: silver scales in the posterior region of the forewing overlap the posterior expression of Optix in the larval wing disc.

Figure S7. Expression of *wingless (wg)* and *blistered (bls)*; and the effect of iCRT3 on the wings of *Bicyclus anynana*. (A-C) Expression of *wg* in the larval wing margin. (D) Adult wings of a control individual injected with DMSO. (E and F) iCRT3 injections reduce the adult wing size relative to DMSO injections. (G-I) Expression of *bls* in larval wings. *bls* is absent at the A1 vein at an early stage (0.50). However, during later stages (1.75) *bls* has a stronger expression at the A1 vein.

Figure S8. Methylene blue staining of *Bicyclus anynana* larval wings. (A and B) Forewing stained with methylene blue; (D and E) Hindwing stained with methylene blue; Illustration of (C) forewing and (F) hindwing venation.

Table S1. Primer table

No.	Primer Name	Sequence	Description		
1.	Dpp_insitu_F	GTTCTTCAACGTAAGCGGCG	Forward primer to amplify <i>dpp</i> for in-situ hybridization		
2.	Dpp_insitu_R	CCACAGCCTACCACCATCAT	Reverse primer to amplify <i>dpp</i> for in-situ hybridization		
3.	En_insitu_F	TTGAAGACCGTTGCAGTCC	Forward primer to amplify <i>en</i> for in-situ hybridization		
4.	En_insitu_R	TAGATTGCTGTTCCCGCTTT	Reverse primer to amplify <i>en</i> for in-situ hybridization		
5.	Inv_insitu_F	GGACCAAAGTGACGAAGAGC	Forward primer to amplify <i>inv</i> for in-situ hybridization		
6.	Inv_insitu_R	TCCGGCACTCTAGCCTCTAC	Reverse primer to amplify <i>inv</i> for in-situ hybridization		
7.	Bls_insitu_F	CTGACCGGCACCCAAGTGAT	Forward primer to amplify <i>bls</i> for in-situ hybridization		
8.	Bls_insitu_R	CGTTGCGGGTGGTGAGACAT	Reverse primer to amplify <i>bls</i> for in-situ hybridization		
9.	Sal_CRISPR_Se q_F	GCATCGACAAGATGCTGAAA	Forward primer to amplify <i>sal</i> for CRISPR-Cas9 invitro cleavage assay		
10.	Sal_CRISPR_Se q_R	TTCATTTAGGGACGGTGGAG	Reverse primer to amplify sal for CRISPR-Cas9 invitro cleavage assay		
11.	Sal_CRISPR_Gui de	GAAATTAATACGACTCACTATAGG <mark>TGA TCGAGCCGGCGTTGA</mark> GTTTTAGAGCTA GAAATAGC	Forward primer for guide synthesis to knockout <i>sal</i>		
12.	Optix_CRISPR_ Guide_1	GAAATTAATACGACTCACTATAGGGGC TTCGCAGCGCTCCAGCTGTTTTAGAGC TAGAAATAGC	Forward primer 1 for guide synthesis to knockout <i>optix</i>		
13.	Optix_CRISPR_ Guide_2	GAAATTAATACGACTCACTATAGGTTCT TCGTCGGGTTCGGGTAGTTTTAGAGCT AGAAATAGC	Forward primer 2 for guide synthesis to knockout <i>optix</i>		
14.	Dpp_CRISPR_G uide	GAAATTAATACGACTCACTATAGG <mark>GAG ACTGTTGTTGTACGACGTGG</mark> GTTTTAG AGCTAGAAATAGC	Forward primer for guide synthesis to knockout <i>dpp</i>		
15.	CRISPR_Guide_ R	AAAAGCACCGACTCGGTGCCACTTTTT CAAGTTGATAACGGACTAGCCTTATTT TAACTTGCTATTTCTAGCTCTAAAAC	Reverse primer for guide synthesis CRISPR guides		
16.	Wg_insitu_F	CAGCAGCTGGATTTTGTCAG	Forward primer to amplify <i>wg</i> for in-situ hybridization		
17.	Wg_insitu_R	TATTGTGCCGTTGTCATCGT	Reverse primer to amplify <i>wg</i> for in-situ hybridization		
18.	Sal_qPCR_F	TGTATGCCATCGCGTATTGT	Forward primer to amplify <i>sal</i> for qPCR		
19.	Sal_qPCR_R	TAGTGGTAAACGCACGACCA	Reverse primer to amplify <i>sal</i> for qPCR		
20.	FK506_qPCR_F	AAACTAACCTGCAGCCCTGA	Forward primer to amplify FK506 for qPCR		
21.	FK506_qPCR_R	CAAGACGGAGAAGTTCCACA	Reverse primer to amplify FK506 for qPCR		
22.	UBQL40_qPCR_ F	CGGTAAACAATTGGAAGATGG	Forward primer to amplify UBQL40 for qPCR		
23.	UBQL40_qPCR_ R	CGAAGTCTGAGGACAAGATGC	Reverse primer to amplify UBQL40 for gPCR		

SI.	Concentration	Date	Eggs Injected	Hatchlings	% Hatchlings
No.					
1.	300 ng/µl	28th Sept	302	48	15.9
		2018			
2.	300 ng/µl	10th Oct 2018	306	25	8.2
3.	300 ng/µl	11th Nov 2018	120	18	15.0
4.	300 ng/µl	9th Feb 2019	135	8	5.9

Table S2. Spalt CRISPR-Cas9 injection table

Table S3. Optix CRISPR-Cas9 injection table

SI.	Concentratio	Date	Eggs Injected	Hatchlings	% Hatchlings
No.	n			-	
1.	300 ng/µl	11 th March 2020	785	85	10.8
2.	300 ng/µl	12 th March 2020	398	47	11.9
3.	300 ng/µl	6 th June 2020	326	65	19.9

Table S4. Dpp CRISPR injection table

SI.	Concentration	Date	Eggs Injected	Hatchlings	% Hatchlings
No.				_	
1.	300 ng/µl	23 rd Jan 2020	623	89	14.3
2.	300 ng/µl	3 rd Mar 2020	923	117	12.7
3.	300 ng/µl	11 th Mar 2020	427	64	14.9

Table S5. In-situ hybridization Buffers

Buffers	Chemicals	Amount
10X PBS (500 ml)	K ₂ HPO ₄	5.34 g
* Sterilize by autoclaving.	KH ₂ PO ₄	2.64 g
	NaCl	40.9 g
	DEPC treated H ₂ O	To 500 ml
1X PBST (50 ml)	1X PBS	50 ml
	Tween® 20	50 µl
20X SSC (1000 ml)	NaCl	175.3 g
*Adjust the pH to 7.0 with 1M HCI and	Trisodium citrate	88.2 g
sterilize by autoclaving.	DEPC treated H ₂ O	Till 1000 ml
Pre-hybridization buffer (40 ml)	Formamide	20 ml
	20X SSC	10 ml
	DEPC treated water	10 ml
	TWEEN20	40 µl
Hybridization buffer (40 ml)	Formamide	20 ml
	20X SSC	10 ml
	DEPC treated water	10 ml
	TWEEN20	40 µl
	Salmon sperm	40 µl
	Glycine (100mg/ml)	40 µl
Block buffer (50 ml)	1X PBS	50 ml
	TWEEN20	50 µl
	BSA	0.1 gm
Alkaline phosphatase buffer (20 ml)	Tris-HCI (pH 8.0)	2 ml
	NaCl (5M)	400 µl
	MgCl ₂ (200mM)	250 µl
	DEPC treated water	Till 20 ml
	TWEEN20	20 µl

Buffers	Chemicals	Amount		
Fix buffer (30 ml)	M PIPES pH 6.9 (500 mM)	6 ml		
	mM EGTA pH 6.9 (500mM)	60 µl		
	% Triton x-100 (20 %)	1.5 ml		
	mM MgSO₄ (1M)	60 µl		
	37% Formaldehyde	55 μl per 500 μl of buffer		
	dH ₂ O	22.4 ml		
Block buffer (40 ml)	50 mM Tris pH 6.8 (1 M)	2 ml		
	150 mM NaCl (5 M)	1.2 ml		
	0.5% IGEPAL (NP40) (20%)	1 ml		
	5 mg/ml BSA	0.2 gr		
	H2O	35.8 ml		
Wash buffer (200 ml)	50mM Tris pH 6.8 (1 M)	10 ml		
	150 mM NaCl (5 M)	6 ml		
	0.5% IGEPAL (20 %)	5 ml		
	1 mg/ml BSA	0.2 gr		
	dH ₂ O	179 ml		
Mounting media	Tris-HCI (pH 8.0)	20 mM		
	N-propyl gallate	0.5%		
	Glycerol	60%		

Table S6. Immunohistochemistry Buffers

Table S7. Raw Cq data on the Dorsomorphin and DMSO treated samples

Biological replicates	Raw Cq (Dorsomorphin treated)		Raw Cq (DMSO treated)			
	spalt	FK506	UBQL40	spalt	FK506	UBQL40
1 (5 th July	28.36	22.50	20.89	28.10	22.69	21.05
2019)	28.36	22.61	20.96	28.05	22.55	20.94
	28.20	22.54	20.76	27.76	22.67	20.94
2 (14 th April	31.54	22.57	20.89	30.43	22.22	20.64
2019)	31.80	22.56	20.90	30.59	22.16	20.47
	31.23	22.50	20.87	30.58	22.19	20.67
3 (21 st May	32.02	22.76	21.15	30.40	22.23	20.60
2019)	31.67	22.72	21.11	30.55	22.16	20.44
	31.39	22.62	21.00	30.32	22.29	20.72

Supplementary Materials and Methods

Peptides used for antibody development (Highlighted in green)

Spalt (XP 023939142.1)

MPRVKPACVRRVSIGESSGSCSEEDVGNAMPDEARDRPEAHMCPRCQEQFENLHDFLYHKRLCDEKAMQM GEERMHSDPEDMVVSGDEEMDGPNKRLEQVRRHRQDAENNNSLEDGEAEIPEADMPPVGLPFPLAGHVTL EALQNTRVAVAQFAATAMANNANNEAAIQELQVLHNTLYTLQSQQVFQLQLIRQLQNQLSLTRRKEDDPH SPPPSEPEQNAPSTPARSPSPPRPPREPSPVIPSPPTSQSLPSTHTHHTPKTEQISIPKIPTSSPSLMTH PLYSSISSSLASSIITNNDPPPSLNEPNTLEMLQKRAQEVLDNASQGLLANNLADELAFRKSGKMSPYDG KSGGRNEPFFKHRCRYCGKVFGSDSALQIHIRSHTGERPFKCNVCGSRFTTKGNLKVHFQRHTSKFPHVK MNPNPVPEHLDKYHPPLLAQLSPGPIPGMPPHPLQFPPGAPAPFPPNLPLYRPPHHDLLPPRPLGDKPLS HHPLFAMREEQDAPADLSKPSAPSPPRPASDIFKSEPQDEESQRDSSFEETDRISPKREIEDNDIGQDAE QDRYPSTSPYDDCSMDSKYSNEDQIGRDSPHVKPDPDQPENLSSKTSSISGPISIATGLRTFPSFPLFPH SPPSSVSSGSLTPFHHHPNSTMDSALTRDPLFYNAILPRPGSNDNSWESLIEI<mark>TKTSETTKLQQLVDNIN</mark>

VCHKKFSDPSMLHQHIRLHTGERNNVFFNQFHDNEINSQSLPGSDVTEYNSFHSIPPPIFPTPSTPGDRR ADSRGTDDESGRDEREPATREFDDEPDIKDRRTSPLSVCASASEFEVKTITTTASLPSATGSESGRSARG SPPSPSPSALSTPPRLPHHSPLPSPPTPLAALGALGGSPFSPLGLAFPPAVRGNTTCTICYKTFACNS ALEIHYRSHTKERPFKCTVCDRGFSTKSSGGGCQCGRRARAPRPPHATALDLWNAFVYPGNMKQHMLTHK IRDMPPGFDKGPGGPSGPPSEEGRDPSPDRRSSPEKLDLKRSPPVHPPPPMSHPPIDMPPLPKRPTVPSI PSHPPPSASSKHLCGVCRKNFSSSSALQIHMRTHTGDKPFRCAVCQKAFTTKGNLKGLLLPATRLISRST NQATALFGTLGPFIYRLSELYAPPSATSALRLVELSDFGSADFR

Armadillo (XP 023941962.1)

MSYQIPSSQSRTMSHSNYGGSDVPMAPSKEQQTLMWQQNSYLVDSGINSGAATQVPSLTGKEDDEMEG**DG** LMFDLDQGFAQGFTQEQVDDMNQQLSQTRSQRVRAAMFPETLEEGIEIPSTQI DPAQPTAVQRLSEPSQM LKHAVVNLINYQDDADLATRAIPELIKLLNDEDQVVVSQAAMMVHQLSKKEASRHAIMNSPQMVAALVRA ISNSNDLETTKGAVGTLHNLSHHRQGLLAIFKSGGIPALVKLLSSPVESVLFYAITTLHNLLLHQDGSKM AVRLAGGLQKMVALLQRNNVKFLAIVTDCLQILAYGNQESKLIILASQGPIELVRIMRSFDYEKLLWTTS RVLKVLSVCSSNKPAIVEAGGMQALAMHLGNPSGRLVQNCLWTLRNLSDAATKVEGLEGLLQSLVQVLAS TDVNIVTCAAGILSNLTCNNQRNKVTVCQAGGVDALVRTVVSAGDREEITEPAVCALRHLTSRHVESEMA QNAVRLHYGLPVIVKLLQPPSRWPLVKAVVGLVRNLALCPANHAPLREHGAVHHLVRLLLRAFNDTQRQR GSVSGGGGAGGAYADGVRMEEIVEGAVGALHILAREGLNRALIRQQNVIPIFVQLLFNEIENIQRVAAGV LCELAADKEGAEMIEAEGATAPLTELLHSRNEGVATYAAAVLFRMSEDKPHDYKKRLSMELTNSLFRDDH QMWPNDLAMQPDLQDMLGPEQGYEGLYGTRPSFHQQGYDQIPIDSMQGLEIGSGFGMDMDIGEADGGGAA SADLAFPEPPLDNNNVAAWYDTDL

Rhomboid (XP 023940805.1)

MANQQEHNKRYMSGKRTRSYRCAVHQRDREVSSENDFHLLLEDPTLFARMVHLVAMEVLPEERDRKYYQE RYTCCPPPFFIICVTLLELGVFAWYAWGAGGVAAAAGPVPVDSPLVYRPDRRELWRFLTYSVVHAGWLH LAFNLLVQLAVGLPLEMVHGAVRCGAVYLAGVLGGSLAASVLDPDVCLAGASGGVYALLAAHLANALLNF HAMRYGAVRLVAALAVASCDVGF<mark>AVHARYTKQEAPPVS</mark>YAAHVAGALAGLTIGLLVLKHAQQRLWERLLW WAALGAYAACTLFAVLYNVFSAPVDELHYMPPDPPPDAGF

Sequences

Sequence of engrailed used for in-situ hybridization (XM 024092264.1)

Sequence of invected used for in-situ hybridization (XM_024092263.1)

Sequence of decapentaplegic used for in-situ hybridization (XM 024080858.1)

Sequence of blistered used for in-situ hybridization (XM 024084428.1)

GCATACGAGCTATCAACGCTGACCGGCACCCAAGTGATGCTGCTGGTCGCGTCGGAGACCGGCCACGTGT ACACGTTCGCGACACGCAAACTGCAGCCGATGATCACGTCCGACTCGGGCAAGCGGCTCATACAGACGTG CCTCAACTCGCCCGACCCGCCCACCACCAGCGAGCAGCGCATGGCCGCCACCGGCTTCGAGGAGACCGAG CTCACGTATAACGTTGTAGACGACGACGAGATGAAGGTGAGACAACTGGCGTACGCTAACCAGTACCCCATAG AGCACCACCCGGGGTTGGCGCCGTCGCCACTGCAGCAGTACCACCAGCACCCGCCCTGCCCCTCGCCCCT CCCCCTCGGCTCGCTGGGCCAGCCGTACTCGCACGCGCATCTATCGCACCCCACATGTCTCACCACCCG CAACG

Sequence of wingless used for in-situ hybridization (XM_024099417.1)

CRISPR targets

Region of *spalt* targeted by CRISPR-Cas9 (location of guide RNA highlighted in red) (XM 024083374.1)

Region of optix targeted by CRISPR-Cas9 (location of guide RNAs highlighted in red) (XM 024080404.1)

Region of *dpp* targeted by CRISPR-Cas9 (location of guide RNA highlighted in red) (XM_024080858.1)