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Butterfly eyespots are beautiful novel traits with an unknown
developmental origin. Here we show that eyespots likely origi-
nated via cooption of parts of an ancestral appendage gene-
regulatory network (GRN) to novel locations on the wing. Using
comparative transcriptome analysis, we show that eyespots clus-
ter most closely with antennae, relative to multiple other tissues.
Furthermore, three genes essential for eyespot development, Dis-
tal-less (DII), spalt (sal), and Antennapedia (Antp), share similar
regulatory connections as those observed in the antennal GRN.
CRISPR knockout of cis-regulatory elements (CREs) for DIl and sal
led to the loss of eyespots, antennae, legs, and also wings, demon-
strating that these CREs are highly pleiotropic. We conclude that
eyespots likely reused an ancient GRN for their development, a
network also previously implicated in the development of anten-
nae, legs, and wings.

evolutionary biology | evolutionary developmental biology | genetics

Ithough the hypothesis of gene-regulatory network (GRN)

cooption is a plausible model to explain the origin of mor-
phological novelties (1), there has been limited empirical evi-
dence to show that this mechanism led to the origin of any
novel trait. Several hypotheses have been proposed for the ori-
gin of butterfly eyespots, a novel morphological trait. These
include cooption of the GRNs that also specify legs (2), embryo
segmentation (3), wing margin (4), and that regulate wound
healing (5). These hypotheses for eyespot GRN origins all rely
on similarities of expression of just a few candidate genes
observed in eyespots and in the site of activity of the proposed
ancestral gene network. To test whether cooption of any of these
networks underlies eyespot origins, we focused on the nymphalid
butterfly Bicyclus anynana, which has served as a model for study-
ing eyespot development (6). Using RNA sequencing (RNA-
seq), we examined and compared the larger collection of genes
expressed in a forewing eyespot of B. anynana with those
expressed in these proposed candidate ancestral traits. Addi-
tionally, we examined a few other traits, including larval head
horns and prolegs, and also pupal eyes and antennae (Fig. 14).

The Transcriptome Profile Shows Eyespots and Antennae
Cluster Together

We first examined which of the sampled tissues shared the most
similar gene expression profile to eyespot tissue, as these should
cluster closer together (7). Pairwise differential expression (DE)
analysis using DESeq2 (8) identified 10,281 DE genes (logFC >
|2| and padj < 0.001) among all tissues sampled. Hierarchical
clustering of tissues, using DE genes, resulted in eyespots cluster-
ing with antennae (Fig. 1C and SI Appendix, Fig. S1), but tissues
were also clustering according to developmental stage (Fig. 1 B
and C and SI Appendix, Fig. S1). To circumvent the strong
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developmental stage signal, we reanalyzed DE genes solely from
3-h-old pupae, when the eyespot tissue was dissected, using 3-h
embryos as an outgroup. We found 7,133 DE genes between the
tissues, with eyespots clustering with antennae, and both forming
a sister clade to the remaining pupal tissues with a high approxi-
mately unbiased (AU) P value (9) (Fig. 1D).

To confirm this clustering, we also performed a principal
component analysis (PCA) and Spearman correlation analysis
between the tissues at 3-h pupal stage. This highlighted that the
tissue groups are distinct from each other in multidimensional
space and showed eyespots clustering closer to whole wings
than to antennae. However, the correlation matrix showed little
variation in gene expression between tissues (SI Appendix, Fig.
S2 A and B), suggesting the distinction between the tissues
could be a result of a small subset of genes.

To more narrowly identify the subset of genes associated
with eyespot development and to examine similarities in their
expression profile with our candidate tissues, we next compared
the transcriptome of dissected eyespot tissue with adjoining
control tissue in the same wing sector (Fig. 14), as done by a
previous study (10). This previous study identified 183 genes
differentially expressed in eyespots relative to sectors of the
wing without eyespots. Our new DE analysis between eyespot
and control wing tissues identified 652 eyespot-specific DE
genes with 370 being up-regulated, which included sal, and 282
down-regulated in eyespots (SI Appendix, Figs. S3 and S4 and
Dataset S1). We mapped the published 183 eyespot DE genes,

Significance

Where do butterfly eyespots come from? One of the long-
standing questions in the field of evolution concerns address-
ing where novel complex traits come from. Here we show
that butterfly eyespots, a novel complex trait, likely originated
from the redeployment of a preexisting gene-regulatory net-
work regulating antennae, legs, and wings, to novel locations
on the wing.
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Fig. 1. Tissues used for RNA-seq analysis and character tree constructed using DE genes. (A) We used 16 tissue groups from three separate developmen-
tal stages of B. anynana for RNA extractions. Embryos at 3 h, 12 h, and 24 h after egg laying. Larval forewings, T1 legs, horns, and prolegs. Pupal anten-
nae, T1 legs, forewings, eyes, wing margins, eyespots, and two eyespot control tissues, all dissected at 3 h after pupation, and a wounded wing dissected
at 24 h after pupation. (B) PCA using 10,281 DE genes obtained from pairwise comparisons between different tissues. Tissues are clustered according to
their developmental stages. (C) Character tree constructed using 10,281 DE genes showed eyespot tissue clustered with antenna tissue first, and next with
tissues from the same developmental stage, except for a 24-h pupal wounded wing (#), which clustered with larval wing tissue. (D) Character tree con-
structed using 7,133 DE genes from 3-h pupal stage with 3-h embryos as outgroup showed eyespot tissue clustered with antenna tissue. **100 unbiased

(AU) P value; *90 to 99 unbiased (AU) P value.

which included DIl and Antp, to the current assembled tran-
scriptome. After removing multimapped genes, we retained 144
genes from the published study for further analysis (Dataset
S1). When hierarchical clustering was performed, using either
the newly identified 652 genes, the 144 genes previously identi-
fied, or both datasets combined, we found that the eyespot
transcriptome always clustered with antennae with strong
support AU P value for the clade. This clustering persisted
with just the 370 up-regulated genes (SI Appendix, Fig. S5 A4, E,
and F).

Given the importance of transcription factors (TFs) in devel-
opment and in establishing GRNs, we used 336 genes anno-
tated as having “DNA-binding transcription factor activity
(gene ontology [GO]:0003700)” and “transcription factor bind-
ing (GO:0008134)” in a separate analysis, which showed eye-
spots again clustering with antennae (SI Appendix, Fig. S5B).
Annotation and gene enrichment for the DE genes between
the 3-h pupal stage tissues showed a strong enrichment in animal
organ morphogenesis (GO:0009887) and anatomical structure
formation (GO:2000026) (SI Appendix, Fig. S6). Performing the
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clustering analysis using genes from these two groups (GO:
0009887 and GO:2000026), in two separate analyses, reproduced
the same results as the full gene set, indicating that these mor-
phogenesis genes show similar expression profiles in both eye-
spots and antennae (SI Appendix, Fig. S5 C and D).

To verify that the square of dissected eyespot tissue has a differ-
ent transcriptome from those of the other dissected wing tissues,
including the Nes1 and Nes2 squares of control wing tissues of the
same size (SI Appendix, Fig. S3A4), we redid the clustering analysis
for the pupal tissue, where we included these two control tis-
sues. The Nes2 piece of wing just anterior to the Cul eyespot,
in the M3 sector, clustered with eyespot tissue and with anten-
nae. However, Nesl, positioned more proximally to the body in
the Cul sector, clustered with the wing margin and then with
the whole wing (SI Appendix, Fig. S7). This analysis shows that
the exact x—y coordinates of these pieces of wing tissue contain
important positional information. The Nes2 piece of tissue dif-
ferentiates an eyespot center earlier in the larval stage (Fig. 2
E-M), but several marker proteins, including DIl and Sal, dis-
appear from these cells by the end of the larval stage (11).
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Fig. 2. Function of sal and regulatory interactions between D/l, sal, and Antp inferred with CRISPR and immunohistochemistry (A). WT female forewing.
(B) sal crispant female forewing. (C) WT female hindwing. (D) sal crispant female hindwing. (E) Levels of DIl and Antp proteins in WT forewing. (F) Levels
of DIl and Antp proteins in DIl crispant forewing. (G) Levels of DIl and Antp proteins in an Antp crispant forewing. (H) Levels of DIl and Sal proteins in
WT forewing. (/) Levels of DIl and Sal proteins in DIl crispant forewing. (J) Levels of DIl and Sal proteins in sal crispant forewing. (K) Levels of Sal and Antp
proteins in WT forewing. (L) Levels of Sal and Antp proteins in Antp crispant forewing. (M) Levels of Sal and Antp proteins in sal crispant forewing. White
square regions were highly magnified. (N) Schematic diagram of genetic interaction among DI, sal, and Antp in the eyespot region of a developing fore-
wing. (Scale bars in A-D: 5 mm for whole wings and wing details.) (Scale bars in E-M: 100 pm in low and 50 pm in high magnification.)

However, it is interesting to observe that this tissue still con-
tains a transcriptome that more closely resembles eyespots
(and antennae) than any other piece of tissue dissected out of a
3-h-old pupa.

These analyses showed that eyespots and antennae form a
sister clade to the other tissues, including legs, which are con-
sidered serial homologs to antennae. However, eyespots
express a key selector gene, Antp, which is known to give legs
their unique identity and differentiate them from antennae.
Antp protein is known to positively regulate DIl and repress sal
in the leg disk of Drosophila (12, 13), whereas in the antennae,
in the absence of Antp, DIl activates sal (14). Comparative data
across 23 butterfly species suggested that eyespots originated
without Antp protein expression, and that Antp was recruited
later to the eyespot GRN in at least two separate lineages,
including in the ancestors of B. anynana (15). We therefore
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reasoned that if eyespots are sharing more transcriptome simi-
larities with antennae, rather than with legs, the regulatory
interactions between DI, Sal, and Antp in eyespots should
resemble those in insect antennae but not those in legs, and
that the regulatory interactions between Antp and the other two
genes should be novel and not homologous.

Function of sal and Regulatory Interactions between DIJ, sal,
and Antp in Eyespots

Before establishing regulatory interactions between the three
genes, we first obtained missing functional data for one of these
genes, sal, lacking for B. anynana. Mutations for DIl and Antp
were previously shown to remove eyespots, pointing to these
genes as necessary for eyespot development (6, 16). We dis-
rupted the function of sal, using CRISPR with a single guide
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RNA (sgRNA) targeting exon 2 (SI Appendix, Fig. S8). sal
crispants (mosaic mutants) showed a range of phenotypes,
from missing eyespots (Fig. 2 B and D and SI Appendix, Fig.
S9) to altered chevron patterns on the wing margin and the
central symmetry system bands running the length of each wing
(Fig. 2B), all mapping to patterns of sal expression in larval and
pupal wings (Fig. 2 H and K) (5, 17). Our data confirmed phe-
notypes previously shown in Junonia coenia (18). However, two
novel and striking phenotypes were the splitting of eyespot cen-
ters into two smaller centers (Fig. 2D and SI Appendix, Fig. S9),
and the partial loss of black scales in the eyespot and their
replacement with orange scales (Fig. 2D), resembling the
“goldeneye” phenotype (19). Taken together, these results con-
firm that sal is necessary for the development of eyespots, and
also for the development of black scales.

To test the regulatory hierarchy between these three eyespot-
essential genes, we knocked out each gene in turn, using
CRISPR-Cas9, and reared the mosaic individuals until the late
fifth instar for larval wing dissections. We performed immuno-
histochemistry on these wings with antibodies against the pro-
tein of the targeted gene and against the other two proteins.
We first examined the interaction of DIl with Antp. In wild-type
(WT) wings, DIl protein is present along the wing margin and
in finger-like patterns, spreading from the wing margin to the
future eyespot centers (Fig. 2E), whereas Antp protein is ini-
tially present in the center of four putative eyespots (from M1
to Cul) (20). In a DIl crispant forewing, Antp protein levels
were affected in DIl null cells (Fig. 2F and SI Appendix, Fig.
S10), whereas DIl protein levels were not affected in Antp null
cells in an Antp crispant (Fig. 2G and SI Appendix, Fig. S11).
These results suggest that DIl is upstream of Antp in eyespot
development. We next examined the interaction of DIl with sal.
In WT wings, Sal protein is broadly present along several wing
sectors, connected to its role in vein patterning (17), and also
present in nine potential eyespot centers (Fig. 2 H and K). In
DIl crispants, Sal protein was lost in DI/ null clones in the eye-
spot centers (Fig. 21 and SI Appendix, Fig. S12), but DIl protein
levels were not affected in sa/ null clones in sa/ crispants (Fig.
2] and SI Appendix, Fig. S13). These results suggest that DIl is
also upstream of sal in eyespots. Finally, we examined the inter-
action between Antp and sal. In Antp crispants, Sal protein is
missing from Antp null cells (Fig. 2L and SI Appendix, Fig.
S14). Furthermore, Antp protein is missing from sal null cells
in sal crispants (Fig. 2M and SI Appendix, Fig. S15). Taken
together, DIl is up-regulating both Antp and sal, and Antp and
sal are up-regulating each other’s expression in forewing eye-

spots (Fig. 2N).

Regulatory Connections between DIl and sal in Eyespot
Development Are Similar to Those in the Antennae of Flies

We next examined whether the appendage expression and regu-
latory connections between these three genes of B. anynana
matched those known in fly leg and antennal development. In
flies, DIl protein is present in both appendages (21), whereas
Sal is only present in antennae and Antp only in legs of flies
(14). In B. anynana, we observed similar protein profiles in
antennae and thoracic legs of pupae (SI Appendix, Figs. S16
and S17). DIl is necessary for sal expression in antennae of flies
(14), as also observed in B. anynana eyespots (Fig. 2L). Antp,
however, negatively regulates sal expression in fly legs (13),
which differs from the regulation observed in eyespots where
Antp and sal up-regulate each other (Fig. 2N). The genetic
interaction of Antp and DIl during leg development in Drosoph-
ila is stage dependent. At the stage when leg primordia are
formed, Antp positively regulates DIl expression in the thoracic
leg bud (12), but when leg segments are being formed, DIl neg-
atively regulates Antp in the distal leg elements (22). These
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regulatory interactions between DIl and Antp in leg develop-
ment are distinct from the regulatory interaction observed in
eyespots (Fig. 2N). Taken together, these data suggest that the
regulatory interactions between DIl and sal in eyespots are
likely homologous to those in the insect antenna GRN. Antp
established a novel regulatory interaction to these two genes in
eyespots, distinct from those found in the leg context of Dro-
sophila. This supports the later and independent addition of
Antp to the eyespot GRN in two separate lineages of butter-
flies, as proposed by Oliver et al. (15).

Two Pleiotropic CREs Reveal a Shared Network between
Eyespots, Antennae, Legs, Wings, and Other Traits

Evidence of GRN cooption is bolstered by the identification of
shared cis-regulatory elements (CREs) driving the expression
of genes common to both the ancestral and the novel trait (eye-
spots) (23). To identify putative CREs specific to wing tissue
with eyespots, we used formaldehyde-assisted isolation of regu-
latory elements using sequencing (FAIRE-seq) to identify the
open-chromatin profile around DIl in forewing and hindwing
pupal tissues of B. anynana. We produced separate libraries
from the proximal and distal regions of the wing, the latter con-
taining the eyespots. Mapping of FAIRE-seq reads from each
wing region to a previously published DIl bacterial artificial
chromosome (BAC) (scaffold length of 230 kb) revealed 18
regions of open chromatin across this scaffold, representing
candidate CREs (Fig. 34). A Basic Local Alignment Search
Tool (BLAST) search of each candidate CRE against the B.
anynana genome revealed that most of these regions contained
repetitive elements. However, one candidate CRE that was
open in the distal forewing at scaffold position 150 kb (Fig. 3B)
(DIlI319 CRE), returned a unique BLAST hit to the genome.
As this region did not contain any repetitive elements, we used
CRISPR-Cas9 to disrupt its function. We designed four guide
RNAs along its 319-bp length to maximize the likelihood of its
disruption (Fig. 34 and SI Appendix, Fig. S18). We obtained a
variety of different phenotypes that were also observed when
targeting exons of the DIl gene using CRISPR (6): Several cat-
erpillars showed a missing or necrotic thoracic leg (Fig. 3C and
SI Appendix, Fig. S19); adults were missing legs and even a
hindwing (Fig. 3 D and E); adults lacked eyespots (Fig. 3 F and
G); and adults showed truncated antennae, pigmentation
defects, and loss of wing scales (Fig. 3H and SI Appendix, Figs.
S$19-S22 and Table S1), all having deletions within the CRE of
various sizes (SI Appendix, Fig. S19). These findings confirm
that the DII319 CRE is pleiotropic and further suggest that eye-
spots use the same GRN as antennae, legs, and wings.

In order to confirm that the DII319 contains a functional and
pleiotropic CRE, we cloned a 917-bp region containing this
CRE into a piggyBac-based reporter construct (24) and evalu-
ated its CRE activity in transgenic butterflies. We observed that
embryos expressed the reporter gene (EGFP) in antennae,
mouthparts, as well as thoracic limbs (Fig. 3K and SI Appendix,
Fig. S23). Later in development we observed EGFP expression
in larval and pupal eyespot centers, indicating that this CRE is
sufficient to drive gene expression in all these traits (Fig. 3
and J and SI Appendix, Fig. S23). Using this same cloned region
containing the DI/I319 CRE, we also observed pleiotropic CRE
activity in antennae, mouthparts, legs, and genitalia, when
tested in a cross-species setting with Drosophila melanogaster
(SI Appendix, Fig. S24), suggesting that this region contains an
ancestral and pleiotropic CRE present in the ancestors of flies
and butterflies.

In order to investigate the extent to which other genes of the
eyespot GRN share the same open-chromatin profiles as genes
expressed in antennae and in other tissues, we performed an
assay for transposase-accessible chromatin using sequencing
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Fig. 3. Multiple traits are affected by disruptions of a single Distal-less CRE. (A) B. anynana DIl locus (previously cloned into a BAC) visualized using IGV show-
ing all 18 FAIRE-seq open-chromatin regions at 24 h postpupation (short pink lines). First exon (untranslated region [UTR] in blue) shows the open-chromatin
region (highlighted by a short pink line) at position 54 kb at the transcriptional start site of DI. The FAIRE peak at position 150 kb (D//319; highlighted with a
purple bar) is open in the B. anynana forewing and was targeted with CRISPR. Four RNA guides were used simultaneously to target this region. (B) FAIRE-seq
results showing an open region of chromatin in the distal forewing (FWD) at position 150 kb on the D/l BAC (blue peak). (C-E) Crispant phenotypes from the
same individual: With a missing thoracic leg as a caterpillar, and the same missing thoracic leg, and also missing hindwing, as an adult. (F and G) Crispant
wing phenotypes showing loss of eyespots and pigmentation defects. (H) Crispants showing antennal defects. (/ and J) DII319 CRE driving EGFP in eyespot cen-
ters in a 24-h pupal wing and a fifth instar larval wing, respectively, in transgenic animals. (K) Transgenic embryo showing EGFP expression driven by the
DII319 CRE in mouthparts, antennae, legs, and pleuropodia (white arrows from Left to Right). HWD, distal hindwing; HWP, proximal hindwing.

(ATAC-seq) with the same tissues used for the transcriptome
analysis. Spearman correlation analysis between the tissues at
3-h pupal stage, using all the open-chromatin regions from the
ATAC-seq dataset, highlighted eyespots showing a strong corre-
lation (>0.9) with antennae and wing margin, consistently
across all replicates (SI Appendix, Fig. S25). A differential
accessibility analysis for the open-chromatin regions associated
with the eyespot DE genes showed that eyespots shared the
greatest number of open-chromatin regions with antennae, as
compared to other tissues at the 3-h pupal stage (Fig. 4 G and H).
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The ATAC-seq data also showed that the DII319 CRE is open
across all different stages and tissues, irrespective of the expres-
sion of DIl (Fig. 44), suggesting that pleiotropic CREs may
always be open throughout development. To test this idea, we
further targeted a genomic region of sal (sal740) that had open
chromatin across most developmental stages using CRISPR-
Cas9 (Fig. 4B). We obtained aberrations in caterpillar horns,
adult antennae, legs, and chevron patterns, as well as missing
eyespots and a missing wing (Fig. 4 C-F and SI Appendix, Fig.
S26), again confirming the presence of a pleiotropic CRE for a
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Fig. 4. Visualization of open chromatin around DI/l and sal genomic regions for different tissues, and identification of a sal pleiotropic CRE. (A) ATAC-seq
reads around the D/l genomic region with highlights in the open regions shared across different tissues (orange) and the targeted D//379 (blue). (B) ATAC
peak regions around the sal genomic region with the sal740-targeted region highlighted in blue. (C—F) sal740 crispant phenotypes: Missing and reduced
eyespots (C), split horn (D), thinner and discolored antenna compared to wild type (E), lost chevrons in the wing margin and ectopic vein in the Cu2 sector
(F). (G) Table with the total number of open peaks associated with eyespot DE genes and number of peaks shared between eyespots and different tissues.
(H) Venn diagram showing the number of open-chromatin regions shared between different tissue groups. (/) Schematic illustrating the hypothesis that
eyespots evolved via cooption of an ancestral appendage GRN with genes (D// and sal) in the GRN reusing the same CREs in both appendages and eyespot
development.
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gene common to eyespots, antennae, legs, and wings. Overall,
fewer crispants were produced when targeting the CREs com-
pared to the coding region of both DIl and sal genes, likely
because coding regions can be more easily disrupted to produce
a phenotype compared to CREs (SI Appendix, Tables S3 and S4).

To further confirm that the two CREs (DII319 and sal740)
drive DIl and sal in an endogenous context, we reanalyzed Hi-C
data from the wandering larval stage, when DIl and Sal proteins
are present in eyespot centers (Fig. 2). Using the DII319 and
sal740 CREs as a bait, we observed that these two sequences
physically interact with the DIl and sal promoters, respectively
(SI Appendix, Fig. S27).

By exploring the gene expression profile and functional regu-
latory connections of essential genes of the eyespot GRN, we
showed that eyespots, a morphological novelty in nymphalid
butterflies, likely evolved via cooption of parts of an ancient
GRN, that also patterns antennae, legs, and wings. This net-
work, initially deployed in primitive sensory systems in the
region of the head, has been subsequently recruited and modi-
fied to produce legs (25) and perhaps even wings (26, 27). We
showed that the transcriptome profile of eyespots more closely
resembles that of antennae compared to any other tested
appendage or butterfly tissue. Furthermore, genes known to be
critical for eyespot development share the same functional con-
nections as observed in Drosophila antennae. Finally, disrup-
tions to CREs of two genes shared between eyespots, legs, and
antennae, affected the development of all these traits. Previous
studies in Drosophila had demonstrated the same CRESs driving
reporter gene expression in separate traits (1) and CRE disrup-
tions leading to pleiotropic effects on patterns of CRE activity
(28). However, here we show that disruptions to two pleiotropic
CREs result in the loss of both ancestral and derived traits,
which provides strong evidence for GRN cooption.

Future work should examine what proportion of the ances-
tral appendage GRN was indeed coopted to eyespot develop-
ment. Our RNA-seq experiment identified hundreds of genes
with shared expression profiles between eyespots and antennae
but also hundreds more with distinct expression profiles. It is
also unclear why eyespots do not grow out of the plane of the
wing, as in the case of ventral appendages. It is possible that
wing-specific proteins repress such outgrowth, or that only a
core set of genes was recruited and rewired to novel down-
stream genes to produce the unique eyespots.

The cis-regulatory paradigm (29) suggests that when a gene
is expressed in a different developmental context it uses a dif-
ferent CRE for its activation. Here we show that this does not
apply to traits that emerge through gene-network cooption, as
the recruited network genes are most likely sharing preexistent
regulatory connections (23, 28) (Fig. 4I). The origin of novelties
has remained an important unanswered question in biology;
and here we show that novelties can arise from GRN cooption,
which provides a mechanism for complex traits to evolve rap-
idly from preexisting traits.

Materials and Methods

Butterfly Husbandry. B. anynana were maintained in laboratory populations
and reared at 27°C and 60% humidity inside a climate room with a 12:12-
h light:dark cycle. All larvae were supplied with young corn leaves to complete
their development until pupation. Following pupation, the pupae were col-
lected and placed in a separate cage until they emerged. The butterflies were
fed every other day with banana on moist cotton in Petri dishes.

Wing Library Preparation and FAIRE-Seq Analysis. \Wings were dissected from
B. anynana at ~22 to 26 h postpupation. For control input libraries (nonen-
riched), two whole forewings and two whole hindwings were pooled. Three
FAIRE-enriched libraries were prepared in total, including a forewing distal
library (the pupal wing was cut in half and the distal region was used for the
library) and two hindwing libraries, using both the proximal and distal regions
of the wing. All FAIRE-enriched libraries were prepared from seven to eight
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pooled wing tissues. Libraries were prepared by Genotypic Technology (India)
as 75-bp pair-end reads and sequenced using Illumina NextSeq. Raw reads
were quality checked and reads with phred scores >30 were retained for
downstream analyses. Following the removal of adapters and low-quality
bases, the reads were aligned to a B. anynana BAC sequence containing DI,
with Burrows-Wheeler Aligner (0.7.13) (30), using the following parameters:
-k Integer (INT), -w INT, -A INT, -B INT, -O INT, -E INT, -L INT, -U INT. The result-
ing SAM files were converted to binary alignment map (BAM) files, using
SAMtools-0.1.7a (31). The BAM files were converted to sorted BAM, followed
by removal of PCR duplicates. The final BAM files were converted to BEDgraph
files, using BEDtools-2.14.3 (32). Peaks were called with MACS2 software (33),
using the aligned enriched and input (control) files with the q value (minimum
false discovery rate [FDR]) cutoff to call significant regions. The command
bdgcmp script was used on the enriched and input BEDgraph files to generate
fold enrichment and log likelihood scores. This command also removed noise
from the enriched sample relative to the control. The BEDgraph files were con-
verted to BigWig files for visualization in Integrative Genomic Viewer (IGV).

Identifying CREs for CRISPR-Cas9 Experiments. The FAIRE-seq data were visu-
alized using IGV. All 18 candidate CREs identified around the DIl locus were
blasted against the B. anynana genome in LepBase to verify whether they
were unique in the genome. Most of the candidate CREs were not unique and
had multiple hits throughout the genome. One of the unique regions, the
CRE DII319, was selected as a suitable target for CRISPR knockout.

Single Guide RNA Design and Production. sgRNA target sequences for sal
were selected based on their GC content (around 60%) and the number of
mismatch sequences relative to other sequences in the genome (more than
three sites). In addition, we selected target sequences that started with a gua-
nidine for subsequent in vitro transcription by T7 RNA polymerase. sgRNA for
the DII319 CRE were designed using CRISPR Direct (34), corresponding to
GGN20NGG. We designed four guides spanning the length of the CRE (Fig. 3B
and S/ Appendix, Fig. $18 and Table S2). Two guides were designed targeting
the sal740 region (SI Appendix, Fig. S28 and Table S2). The sgRNA templates
were created by a PCR with overlapping primers, using Q5 polymerase (New
England Biolabs [NEB]). Constructs were transcribed using T7 polymerase and
(10x) transcription buffer (New England Biolabs), RNase inhibitor (Ribolock),
nucleoside triphosphates (NTPs) (10 mM), and 600 ng of the PCR template.
The final sample volume was 40 pL. Samples were incubated for 16 h at 37°C
and then treated with 2 pL of DNase 1 at 37 °C for 15 min. Samples were puri-
fied by ethanol precipitation, and RNA size and integrity were confirmed by
gel electrophoresis.

Cas9 mRNA Production. The plasmid pT3TS-nCas9n (Addgene) was linearized
with Xbal (NEB) and purified by phenol/chloroform purification and ethanol
precipitation. pT3TS-nCas9n was a gift from Wenbiao Chen, Vanderbilt Uni-
versity, Nashville, TN (Addgene plasmid #46757; http://addgene.org/46757;
Research Resource identifiers [RRID]:Addgene_46757). In vitro transcription of
mRNA was performed using the mMESSAGE mMACHINE T3 kit (Ambion). One
microgram of linearized plasmid was used as a template, and a poly(A) tail
was added to the synthesized mRNA by using the Poly(A) Tailing Kit (Thermo
Fisher). The A-tailed RNA was purified by lithium-chloride precipitation and
then dissolved in RNase-free water and stored at —80°C. The Cas9 transcript
was used for producing sal crispants and for the analysis of regulatory interac-
tions among DIl, Antp, and sal.

In Vitro Cleavage Assay for the DII319 CRE. The sgRNAs were tested using an
in vitro cleavage assay. Wild-type genomic DNA was amplified using primers
that were at least 200 bp from the sgRNA sites. sgRNA (200 ng/pL per guide),
Cas9 protein (800 ng/uL) (stored in a buffer containing 300 mM Nacl, 0.1 mM
edetate disodium salt dihydrate, 1 mM dithiothreitol, 10 mM Tris-HCl, 50% glyc-
erol pH 7.4 at 25°C), NEB buffer 3 (1 pL), and bovine serum albumin (BSA) (1 pL)
were brought to a final volume of 10 uL with nuclease-free water and incubated
at 37 °C. After 15 min of incubation, the purified amplicon (100 ng) was added
to the sample, which was then incubated for an additional 1 to 2 h at 37 °C. The
entire reaction volume was analyzed on a 1% agarose gel. Cas9 protein was
purchased from NEB EnGen Cas9 nuclear localization sequence. The cleavage
assay confirmed that each guide successfully cleaved the PCR amplicon.

Embryo Injections. Wild-type laboratory populations of B. anynana adults
were provided with corn plants to lay eggs. The eggs were collected within
1.5 h of oviposition and placed onto 1-mm-wide strips of double-sided tape in
plastic Petri dishes (90 mm). Cas9 protein (final concentration 800 ng/uL) and
sgRNA (final concentration 200 ng/uL per guide) for all four guides were pre-
pared in a total volume of 10 pL and incubated for 15 min at 37 °C prior to
injection along with 0.5 pL of food dye to improve visualization of the injected
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sample into the embryos. For sal crispants, Cas9 mRNA (500 pg/pL final concen-
tration) and sgRNA (500 pg/pL final concentration) were injected along with
one-tenth of the volume of food dye. For sal740 CRE, eggs were injected with
the mix of Cas9 protein (final concentration 800 ng/pL) and sgRNA (final con-
centration 400 ng/pL per guide). The injection mixture was kept on ice after
the incubation and prior to injection. Embryo injections were carried out by
nitrogen-driven injections through glass capillary needles. Injected eggs were
stored in closed Petri dishes containing cotton balls that were dampened daily
to maintain humidity. The hatched larvae were reared in small paper cups
for 1 wk and then moved to corn plants to complete their development.
SI Appendix, Tables S1, S3, and S4 summarize the injection results.

In Vivo Cleavage Assay and Genotyping of sal Crispants. Genomic DNA was
extracted with a sodium dodecyl sulfate (SDS)-based method from a pool of
five injected embryos that did not hatch. About 250 bp of sequence spanning
the target sequence was amplified with PCRBIO Tag Mix Red (PCR Biosystems),
and PCR conditions were optimized until there were no smears, primer dimers,
or extra bands. Primers are listed in S/ Appendix, Table S2. The PCR products
were purified with the Gene JET PCR purification kit (Thermo Fisher). A total
of 200 ng of PCR product was denatured and reannealed in 10x NEB2 buffer.
One microliter of T7 endonuclease | (NEB) was added to the sample, while 1 pL
of MQ water was added to a negative control. Inmediately after the incuba-
tion for 15 min at 37°C, all the reactions were analyzed on a 3% agarose gel.
Amplicons that showed positive cleavage from the T7 endonuclease | assay
were subcloned into the pGEM-Teasy vector (Promega) through Thymine and
Adenine (TA) cloning. For each target, we picked eight colonies, extracted the
plasmid with a traditional alkali-SDS method, and performed a polyethylene
glycol (PEG) precipitation. Sequence analysis was performed with the BIGDYE
terminator kit and a 3730x| DNA Analyzer (Thermo Fisher).

Screening and Genotyping DII319 Crispants. Newly emerged caterpillars were
screened under a microscope to look for developmental defects affecting any
regions where DIl is expressed, such as the thoracic legs, mouthparts, and pro-
legs. Any caterpillars exhibiting defects were imaged and reared individually
in paper cups until the butterflies eclosed. Caterpillars that died were immedi-
ately frozen for DNA isolation and genotyping. All other surviving caterpillars
with no apparent developmental abnormalities were reared in groups on
corn plants and fed ad libitum every 2 d until pupation. The eclosed butterflies
were frozen individually at —20°C. Each butterfly was carefully screened
under a microscope and examined for asymmetric crispant phenotypes, focus-
ing particularly on phenotypes expected for a DIl knockout, such as append-
age, eyespot, or pigmentation defects.

Colony PCR to Identify CRE Deletions. For selected crispants, genomic DNA
was extracted from the thorax (E.Z.N.A. tissue DNA kit) and used for PCR to
prepare samples for genotyping. The samples were visualized on a gel to con-
firm the correct size band and the PCR product was purified using a Thermo
Scientific PCR purification kit. The DNA was cloned into a pGEM T-Easy Vector
(Promega) and the plasmid was transformed into DH5 alpha Escherichia coli.
White colony selection was used for colony PCR. The bands were visualized on
a 1% agarose gel to look for bands with shifts relative to the WT band. PCR
products from colonies showing evidence of a deletion were submitted for
Sanger sequencing PCR (Axil Scientific, Singapore), including a sample that
was amplified from B. anynana wild-type genomic DNA.

Butterfly Enhancer Reporter Assay. A 917-bp region containing the DI/[319
CRE was cloned into the piggyGUE vector via Gateway technology (Thermo
Fisher). piggyGUE is the EGFP version of piggyGUM, the piggyBac-based
reporter construct that was previously published (24). The details of piggyGUE
will be published elsewhere. The 917-bp region was amplified from B. any-
nana wild-type genomic DNA using a primer containing CACC at the 5' end
for directional cloning. The PCR product was cloned into the pENTR vector
and further cloned into the piggyGUE vector via a ligation reaction, as
described by Lai et al. (24). A total of 4 uL of the LR reaction mix was used for
bacterial transformation. After sequence analysis to confirm the presence of
SNPs in the D/I319 CRE, plasmid DNA was amplified, using a Midiprep kit (Qia-
gen). The piggyGUE D/I379 CRE plasmid was diluted to 1 pg/uL and mixed in a
1:1 ratio with a hyperactive piggyBac transposase plasmid (35). Embryos (n =
550) were collected from B. anynana butterflies reared at 27 °C and injected
~1 h after egg laying with the plasmid solution and a small amount of food
dye, using a glass injection needle and nitrogen gas pressure. Eggs were trans-
ferred in a Petri dish to a chamber and kept moist to prevent dehydration.
From this batch of eggs, 40 caterpillars hatched and were reared in paper cups
during the first week and then transferred to cages with corn plants to com-
plete their development. At all stages, caterpillars were fed corn ad libitum.
From this batch of caterpillars, 19 reached adulthood (10 females and 9 males).
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These butterflies were evenly distributed into four cages (~5/cage) and placed
with respective wild-type males and females for breeding. We were unable to
observe any dsRed signal (the positive marker of transgenesis driven by the
3xP3 promoter) in the eyes of the caterpillars from the F1 or F2 generation,
despite ubiquitous dsRed signal in some first instar larvae (only) of the F1 gen-
eration, which were used later for outcrossing to wild-type individuals. This
ubiquitous signal was not observed again in the offspring of these larvae. We
collected eggs from the F3 generation and dissected some embryos for EGFP
antibody staining. Two of the four dissected embryos showed expression of
EGFP driven by the DI/I319 CRE in the embryonic antennae, mouthparts, tho-
racic legs, and pleuropodia (Fig. 3K and S/ Appendix, Fig. S23). Subsequent
hemolymph PCR genetic screening in individuals of the fourth generation
failed to identify additional positive individuals and the line was lost. A second
line was created, using similar methods as described above, where we were
able to observe EGFP expression in the eyespot centers at both larval and
pupal stages (n = 6) and also in embryos (n = 2).

Drosophila Enhancer Reporter Assay. The same 917-bp sequence that con-
tained the DI//319 CRE was directionally cloned into pENTR-D, then Gateway
cloned into the piggyPhiGUGd, the Gal4-delta version of the previously
reported piggyBac-based reporter construct (24). piggyPhiGUGd also has an
attB site, allowing phiC31 transgenesis. For Drosophila transgenesis, the pig-
gyPhiGUGd DI/I379 CRE construct was transformed into the attP2 site (68A4)
through phiC31 integrase-mediated transgenesis system with EGFP as a visible
marker (BestGene Drosophila transgenic service). Established transgenic flies
were crossed with G-TRACE (36) to visualize the tissues with CRE activities.

Antibody Staining of B. anynana Embryos and Wings. Two-day-old embryos,
as well as fifth instar larval and pupal wing tissues were dissected in phos-
phate buffered saline (PBS) buffer under the microscope. The samples were
fixed in 4% formaldehyde/fix buffer (0.1 M Pipes pH 6.9, 1 mM ethylene glycol
tetraacetic acid pH 6.9, 1.0% Triton X-100, 2 mM MgSO,) for 30 min on ice.
The samples were washed with 0.02% PBSTx (PBS + Triton X-100) three times
every 10 min and then blocked in 5% BSA/PBSTx for 1 h. The samples were
then incubated in 5% BSA/PBSTx with the primary antibody, and incubated at
4°C overnight. As primary antibodies, we used a rabbit polyclonal anti-DIl (at
1:200, a gift from Grace Boekhoff-Falk, University of Wisconsin, Madison, WI),
a mouse monoclonal anti-Antp 4C3 (at 1:200; Developmental Studies Hybrid-
oma Bank), a rabbit anti-Sal (at 1:20,000 for wings and pupal tissues, and
1:2,000 for embryos) (37), and a rabbit anti-EGFP antibody (at 1:200; Abcam
ab290) for the transgenic embryos at 24 h (n = 4), larval wing discs from the
fifth instar (n = 3), and pupal wings at 24 h (n = 3), as well as WT controls (n =
2). For double staining, we added two primary antibodies to the same tube.
The wings were washed with PBSTx three times every 10 min. Then, we
replaced the PBSTx with 5% BSA/PBSTx to block for 1 h, followed by incubation
with the secondary antibody (1:200) in 5% BSA/PBSTx at 4 °C for 2 h. The wings
were washed with PBSTx three times every 10 min, followed by mounting the
wings in ProLong Gold Antifade Mountant (Thermo Fisher). The images were
taken under an Olympus FV3000 confocal laser scanning microscope.

Sample Collection and Library Preparation for RNA Sequencing. In order to
identify gene expression patterns specific to eyespot formation on the devel-
oping wings, we extracted RNA from 16 different tissue types: 3- to 4-h-old,
12- to 13-h-old, and 24- to 25-h-old embryos; T1 legs, prolegs, forewings, and
horns from wandering caterpillars; T1 legs, antennae, forewings, forewing
margins, eyes, eyespots, and two control tissues adjacent to eyespot centers
from 3-h-old pupae (Fig. 1A). For wing wounding experiments, we poked one
wing between 17 and 18 h after pupation in two different places in the M3 sec-
tor, using a fine tungsten needle with a diameter of 0.25 mm and 0.001 mm at
the tip (FST No. 10130-10). We collected the wings 6 h later, which corresponds
to 23 to 24 h after pupation, and we also collected the other nonpoked wings
as controls (5). In addition, we also collected tissues from 24-h-old and 48-h-old
forewings for the clustering analysis. We performed the experiments with four
biological replicates for each tissue type with 10 to 25 female individuals in
each replicate (both left and right tissues were used, except for the wounded
pupal wings, where a single wing was used) (S/ Appendix, Table S5). Total RNA
was extracted in 70 pL of nuclease-free water, using the Qiagen RNA Plus Mini
kit. RNA quantity and integrity were measured using a Nanodrop and an RNA
bleach gel (38). RNA libraries were prepared using the Truseq stranded mRNA
kit from Illumina. Forty million reads were sequenced for each replicate using
NovosEq. 6000, with 150-bp paired end and an average insert size of 250 to
300 bp. Library preparation and sequencing were carried out at AIT Novogene,
Singapore. In order to avoid batch effects, we randomized the sample extrac-
tion and RNA isolation, such that two replicates of the same group were never
extracted at the same time.
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RNA-Seq Analysis. The raw RNA-seq data were quality controlled and filtered.
Adapter sequences and reads with low quality (less than Q30) were trimmed,
using bbduk scripts (ktrim =r, k = 23, mink = 11, hdist = 1, tpe, tbo, qtrim =rl,
trimq = 30, minlen = 40). In order to remove any bacterial contamination in
the samples, we used the bbsplit script, which is a part of the bbmap tools
(39). All bacterial genomes were downloaded from the National Center for
Biotechnology Information (NCBI) (last downloaded in June 2018), and the
reads were mapped to the bacterial genomes, using bbmap. Only reads whose
pairs also passed through the filter were further analyzed. To remove any
ribosomal RNA sequences from the RNA-seq data, the reads were aligned to
the eukaryotic rRNA database available in sortmeRNA (40). The processed
reads from different samples were then mapped to the BaGv2 genome, using
hisat2 (41) (mapping statistics in S/ Appendix, Table S6), resulting in bam files
that were sorted by genomic positions, using samtools (31). They were used as
inputs in StringTie (41) to create the initial transcriptome assembly with
71,042 transcripts, which was used to annotate the genome using Maker v.3
(42), resulting in 18,196 genes with 29,389 transcripts.

RNA-Seq DE Gene Analysis. A read count matrix of the annotated genes was
obtained for the samples using StringTie (41). We used the GO term:s to filter
out any ribosomal genes before obtaining the read counts. This approach led
to the removal of 496 genes to a final set of 17,700 genes, which was used
throughout the analysis. Correlations between the replicate samples were
analyzed using DESeq?2 (8) with a sample distance matrix. One of the antennal
samples was removed due to its poor correlation with its other biological repli-
cates. The remaining samples were used for the downstream analyses (S/
Appendix, Fig. $29).

Identifying Eyespot-Specific DE Genes. To identify eyespot-specific genes, a
pairwise DE analysis was performed between eyespot and control adjacent tis-
sues, Nes1 and Nes2, using DESeq2 (Fig. 1A and S/ Appendix, Fig. S3). Common
genes up-regulated and down-regulated between eyespot vs. Nes1 and eye-
spot vs. Nes2 with an adjusted P value (padj) of 0.05 were chosen as eyespot-
specific DE genes (Dataset S1).

RNA Hierarchical Sample Clustering. In order to identify the tissue with the
closest gene expression profile to eyespots, we used all tissue samples except
the eyespot control tissue samples. DE analysis between the multiple tissues
was performed, using run_DE_analysis.pl script provided in Trinity tool, using
DESeq2 as the method of choice for this analysis (43). Hierarchical clustering
was performed for the different tissues, using genes that showed a log2fold
change of |2| and padj value of 0.001, as in Fisher et al. (44). Clustering was
performed using an Euclidean distance matrix derived using the DE genes for
the tissues with the hclust function in R (45). The pvclust package (9) in R was
used to calculate the uncertainty in the hierarchical clustering with a 1,000
bootstrap value. PCA and Spearman correlation analysis for 3-h pupal tissues
were carried out using DESeq2 and corrplot (46).

ATAC-Seq Library Preparation. We prepared ATAC libraries for the same set
of tissues as we did for the RNA-seq experiment, except for the eyespot con-
trol tissues (S/ Appendix, Table S7). Library preparation failed for a few groups
leading to two to four biological replicates per group. Tissues were collected,
flash frozen in liquid nitrogen, and stored in —80°C, before we extracted
nuclei and prepared the libraries. We used 10 to 25 individuals and ~80,000
nuclei per replicate. Libraries were prepared as described in the Omni-ATAC
protocol (47) with slight modifications. Individual tissues extracted at different
time periods during the process were randomized and pooled into each repli-
cate before extracting the nuclei. The tissues were thawed and homogenized
in 2 mL of ice cold 1x homogenization buffer (HB) in a 2-mL glass douncer.
Homogenization was performed by 10 strokes with pestle A, followed by 15
strokes with pestle B. The homogenized mixture was left on ice for 2 min
before filtering it through a 100-um nylon mesh filter into a DNA “low bind”
2-mL Eppendorf tube (Z666556-250EA). The filtered mixture was centrifuged
at 2,500 rpm, and the pellet (the nuclei) was collected along with 50 L of the
solution at the bottom, keeping unwanted cytoplasmic RNAs in the top layers.
The filtered nuclei were diluted in ATAC-resuspension buffer (RSB buffer),
and 10 pL of the solution was used to count the nuclei, using a hemocytome-
ter. Approximately 80,000 cells were used for each replicate to prepare the
libraries. The tagmentation enzyme (TDE1) was obtained from Illumina (lllu-
mina tagment dna tde1 enzyme and buffer smaller kits No. 20034197). As the
concentration of the TDE1 and cell number greatly affect the identification of
open-chromatin regions, we estimated the amount of enzyme needed for
each reaction, using the formula: volume of enzyme = genome size of B any-
nana [475MB] * number of cells [80,000] *2.5/(genome size of humans
[3200MB] *50,000). We used 0.65 pL (final concentration of 10.4 nM) of
enzyme for each reaction. The Omni-ATAC transposition reaction was carried
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out as follows: 80,000 cells suspended in ATAC-RSB buffer were centrifuged
at 2,500 rpm for 10 min at 4°C. The supernatant was removed, and the
nuclei-containing pellet was kept. To perform the cell lysis, 50 pL of ice-cold
ATAC-RSB was added to the pellet, along with 0.1% Nonidet P-40, 0.1%
Tween-20, and 0.01% digitonin. The mixture was incubated for 3 min on ice.
Subsequently, 1 mL of ATAC-RSB buffer containing only 0.1% Tween and no
Nonidet P-40 nor digitonin was added, and the mixture was centrifuged at
2,500 rpm. The supernatant was discarded, and the pellet was retained, to
which 50 pL of transposition mixture (6.5 pL 2x TD buffer, 0.65 pL transposase
(10.4 nM final concentration), 16.5 pL PBS, 0.5 pL 1% digitonin, 0.5 pL 10%
Tween-20, 25.35 pL H,0) was added. The reaction was incubated for 25 min at
37°C at 1,000 rpm in a thermomixer. After the transpositions and tagmenta-
tion occurred, the samples were prepared for sequencing by adding Illumina/
Nextera adapters with dual indexing and further PCR amplified for 10 cycles.
The PCR products were purified, using a Zymo-DNA Clean & Concentrator-5
kit, and the DNA fragments were size selected between 50 and 1,500 bp, using
the ProNex Size-Selective Purification System (NG2002) from Promega. The
samples were sequenced, using NovosEq. 6000 with an average read depth of
30 million and 2 x 50 bp paired end reads by AIT Novogene, Singapore.

ATAC-Seq Peak Calling. ATAC-seq analysis was perform as described in Lewis
et al. (48) and Lewis and Reed (49) with modification. ATAC reads were proc-
essed, using bbduk scripts from bbmap tools to remove any adapters. The
reads were mapped to the BaGv2 genome, using bowtie with the -x 1500 and
-m1 parameters. Only reads with insert sizes of 1,500 bp or less and only those
mapping to a unique region of the genome were mapped. Reads mapped to
the mitochondrial genome were removed, using samtools idxstats, and reads
marked for PCR duplicates were also removed, using GATK MarkDuplicates.
We kept only paired-end mapped reads with a phred quality score of Q20 and
above for downstream analysis. Because the Tn5 transposase binds to DNA as
a dimer and inserts adapters of 9 bp in length at the insertion sites, the start
sites of the mapped reads were adjusted to an offset of +4 bp in the forward
strand and —5 bp in the reverse strand. The bam files were converted to bed
files, using Bedtools (32), and we used F-SEq (50) to call peaks for each sample.
Bedtools intersect was used to identify the common set of peaks for each tis-
sue type. Peaks from all samples were merged if they were separated by
50 bp, using Bedtools merge to create 313,425 consensus peaks used for the
downstream analyses. FeatureCount from the Subread package (51) was used
to extract a read count matrix corresponding to the consensus peaks for all
samples. The FRiP score, which is defined as the fraction of all reads that are
mapped to peaks across the entire genome, was used to measure the quality
of the ATAC-seq data. Our ATAC-seq data showed a median FRiP score of
0.846, which is higher than the ENCODE standard (>0.3) for the fraction of
reads falling into peaks (S/ Appendix, Table S8). DeepTools (52) was used to
access the sample correlation between the replicates and quality of the librar-
ies (S| Appendix, Fig. S30).

ATAC-Seq Differential Peak Analysis. Differential peak analysis was per-
formed using DESeq2 for 3-h pupal tissues. Peaks were considered differen-
tially accessible with a padj value of 0.05. We also mapped the D/I319 peak
identified from the FAIRE data to the BaGv2 genome, using blastn, to identify
its position in the new genome assembly and test whether the ATAC-seq anal-
ysis was also able to identify it. To identify potential CREs for sal, ATAC peaks
from 3-h pupal tissues were visualized using IGV and we targeted one poten-
tial candidate region (sa/740) within the intronic region of sal gene loci, which
is open across almost all of the tissues. Spearman correlation analysis between
the 3-h pupal tissues was performed using deepTools (52).

Hi-C Analysis and Virtual 4C. Hi-C analysis was performed as described in Lewis
et al. (48).The Hi-C library used for scaffolding the B. anynana genome was
reanalyzed, using the D/I319 and sal740 region as bait, to verify whether these
regions interacted with the promoter of DIl and sal, respectively. Libraries
were mapped to the BaGv2 assembly, using Juicer (53). We used the contact
map obtained from Juicer to construct a virtual 4C plot for the window
around the DII319 and sal740 regions by placing reads in a 3-kb bin, using the
script from ref. 54.

Screening and Genotyping sal740 Crispants. Caterpillars that emerged were
carefully screened under the microscope for any defects in their body, espe-
cially in the head region where sal expression is observed. Individuals showing
any abnormalities were imaged and grown separately in a cup, whereas all
others were grown in a separate cage. Adults were immediately frozen at
—20°C after emergence and screened later under a microscope for any defects
in eyespots, wings, legs, and antennae. DNA was extracted from the crispant
wing. PCR amplified the target region and amplicon sequencing was done
using MisEq. 2 x 250 bp with 50,000 reads at Genewiz, China.
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Hi-C Genome Assembly. Eggs were collected from a single pair of mated
B. anynana butterflies and reared. Eighteen female siblings were harvested at
the wandering stage for DNA extraction. Guts were removed, and the samples
were immediately flash frozen in liquid nitrogen and stored at —80°C before
the samples were sent to Dovetail Genomics to perform Chicago and Hi-C
library preparation and analysis. The Chicago library preparation uses in vitro
chromatin fixation, digestion, and cross-linking of regions in the genome that
are close to each other in terms of three-dimensional (3D) chromatin architec-
ture. In order to sort and scaffold the genome, 233 million reads (2 x 150 bp)
were sequenced from the Chicago library and mapped to the previously pub-
lished B. anynana genome (v1.2) with 10,800 scaffolds (55). The HiRise pipeline
was used to identify misassemblies, to break the scaffolds, and to sort the scaf-
folds. Only scaffolds greater than 1 kb in length (n = 5,027) were used because
scaffolds needed to be long enough for the read pairs to align and be scaf-
folded in accordance with the likelihood model used by HiRise. Next, 153 mil-
lion reads (2*150) sequenced from the Hi-C library were mapped to the
genome assembly output generated from the Chicago-HiRise pipeline to iden-
tify any misassemblies from the Chicago pipeline and correct them to produce
a final genome assembly of high contiguity.

The genome assembly obtained from the HiC pipeline was ordered, using
the available linkage information from Beldade et al. (56), using Chromono-
mer (57). A total of 289 SNP FASTA sequences were mapped to the Hi-C assem-
bly, using blastn to identify their corresponding positions in the Hi-C genome.
Using the SNP position obtained from blastn, a list describing the genetic map
was manually created, which later passed through Chromonomer to sort the
Hi-C assembly resulting in the final assembly (BaGv2) that was used for the cur-
rent study. The BUSCO score (58) was used to check for the completeness of
the gene sets in the assembly.

Genome Annotation. The genome was repeat masked for transposable ele-
ments, small repeats, and tandem repeats before annotation as described in
ref. 55. The soft repeat-masked genome was annotated, using four rounds of
Maker v.3 (42). The transcriptome assembled from the RNA-seq data and gene
sequences annotated from the previous version of the genome were com-
bined and used as transcripts for the species, with transcriptome and protein
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sequences from Pieris rapi, J. coenia, and Bombyx mori as relative transcripts
and protein homology evidences for the first round of gene predictions. Out-
put gene predictions from each round were used as input for the next round.
Snap and Augustus were used for the second round of gene predictions, fol-
lowed by Genemark for the third round of gene modeling. Then we per-
formed one final round of Snap and Augustus predictions. The minimum
length of 35 amino acids was set for gene predictions. The predicted gene
models were kept for genes that had an annotation edit distance (AED) score
of <1 and/or had a gene ontology obtained from Interproscan (59). This
resulted in 18,189 genes with 29,490 transcripts. In order to correct the anno-
tations and produce a standardized gff3 file, the gff file obtained from Maker
was run through agat_convert_sp_gxf2gxf.pl script, which is a part of AGAT
tools (60). This step resulted in the removal of 82 identical isoforms and added
the missing gene features, leading to a total of 18,196 genes with 29,389 tran-
scripts. Functional annotation was performed by locally blasting the tran-
scripts against a nonredundant (nr) protein database, using diamond blast
(61), and a gene ontology analysis was performed using Interproscan in
Blast2Go (62). Finally, the blast results were merged with the interproscan
results in Blast2Go to produce a final functional annotation for the genome.
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