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Abstract

We report a high-quality genome draft assembly of the dark-branded bushbrown, Mycalesis mineus, a member of the 
Satyrinae subfamily of nymphalid butterflies. This species is emerging as a promising model organism for investigating the 
evolution and development of phenotypic plasticity. Using 45.99 Gb of long-read data (N50 = 11.11 kb), we assembled a 
genome size of 497.4 Mb for M. mineus. The assembly is highly contiguous and nearly complete (96.8% of 
Benchmarking Universal Single-Copy Orthologs lepidopteran genes were complete and single copy). The genome comprises 
38.71% of repetitive elements and includes 20,967 predicted protein-coding genes. The assembled genome was super-scaf
folded into 28 pseudo-chromosomes using a closely related species, Bicyclus anynana, with a chromosomal-level genome as 
a template. This valuable genomic tool will advance both ongoing and future research focused on this model organism.
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Significance
The dark-branded bushbrown, Mycalesis mineus, is a tropical butterfly that exhibits phenotypic plasticity in response to 
environmental cues and is also sexually dimorphic. The lack of a comprehensive genome resource has been a significant 
obstacle in utilizing M. mineus as a model system in functional genomic research focused on sexual dimorphism and 
phenotypic plasticity. Here, we present the first high-quality draft genome of M. mineus, which will serve as a valuable 
resource in addressing some of these questions.
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Introduction
The dark-branded bushbrown butterfly Mycalesis mineus is 
a tropical satyrid that inhabits Asia, ranging from India to 
Indonesia and the Philippines. Its larvae primarily consume 
grasses, while the adult butterflies feed on decaying fruits 
found on the ground. The adult male and female are sexu
ally dimorphic, and males are distinguishable by their smal
ler size, the presence of silver scales and hair pencils on their 
wings, and a darker overall coloration (Fig. 1).

Both the adults and the pupae vary in their color patterns 
in response to environmental cues. Adult M. mineus 

butterflies display two distinct seasonal forms, referred to 
as wet and dry morphs. In the dry morphs, the wings lack 
or have smaller eyespots compared to the wet morphs, 
and this plasticity is controlled, in part, by temperature 
(Islam et al. 2012; Van Bergen et al. 2017; Fig. 1). 
Moreover, pupae grown in two different relative humidity 
(RH) conditions in the laboratory exhibited two color 
morphs: brown color at low RH (60%) and green color at 
high RH (85%; Mayekar and Kodandaramaiah 2017). 
Despite this species demonstrating phenotypic plasticity in 
two separate traits and being sexually dimorphic, limited 
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functional studies have been conducted to investigate the 
developmental basis and the evolution of these distinct 
traits.

Most research on butterfly wing pattern plasticity has fo
cused on size plasticity of Bicyclus anynana eyespots 
(Brakefield and Reitsma 1991; Tian and Monteiro 2022). 
This species is another satyrid found in Africa, which di
verged from M. mineus around 25 My ago (Chazot et al. 
2021). Modern functional tools and a high-quality genome 
have been established for B. anynana (Monteiro et al. 2013; 
Banerjee and Monteiro 2018; Murugesan et al. 2022) while 
no tools or genome has been established for the study of 
M. mineus. Establishing a high-quality genome for 
M. mineus is an initial step for including this species in stud
ies that aim to understand the evolution and development 
of eyespot size plasticity in this group of satyrid butterflies. 
In this study, we present a high-quality draft genome as
sembly and gene annotation for M. mineus.

Results

Genome Assembly Statistics

High molecular weight (HMW) DNA was extracted from a sin
gle female individual. A total of 7.6 µg (Qubit reading) of this 
HMW DNA extracted was utilized completely for Oxford 
Nanopore and short-read library preparation and sequencing.

Long-read sequencing using Oxford Nanopore technol
ogy produced an output of 6.06 million reads, totaling 
45.5 Gb of data (∼90× coverage), with an N50 of 11.1 kb. 
Short-read sequencing generated approximately 59 Gb of 
data (∼118×). The long-read data were utilized for con
structing the genome assembly using two different assem
blers. The Flye (v2.9.2-GCC-11.3.0) assembler produced 
an assembly of 875 Mb with an N50 of 198 kb, and the lar
gest contig size was 15.61 Mb. The Wtdbg2 (v.2.5) assem
bler generated an assembly of 505 Mb with an N50 of 
4.5 Mb, and the largest contig size was 36.9 Mb. These 
two assemblies were merged using quickmerge (v0.3-5, 
Bioconda package), followed by the removal of haplotigs 
and heterozygosity through purge_haplotigs (v1.1.2, 
Bioconda package), resulting in a genome assembly with a 
size of 506.7 Mb and an N50 of 8.8 Mb. The purged assem
bly underwent further refinement through polishing, using 
two rounds of racon and medaka with long reads, as well as 
using POLishing by Calling Alternatives (POLCA; part of 
MaSuRCA v3.2.1 assembler) with short reads.

Assembled contigs were aligned to the genome of the 
closely related species B. anynana and showed a high degree 
of synteny (supplementary fig. S1A, Supplementary Material
online). But we also observed that some of the contigs were 
likely misassembled, as a few large M. mineus contigs mapped 
to multiple smaller scaffolds/chromosomes of B. anynana 
(supplementary fig. S1A, Supplementary Material online). 
So, we used ragtag_correct to break any misassembled con
tigs at the places where long reads are mapped at very low 
coverage. After this ragtag_correct step, the two genomes still 
showed high level of synteny, but the M. mineus genome be
came fragmented into more pieces (supplementary fig. S1B, 
Supplementary Material online). Finally, the contigs were 
super-scaffolded using the B. anynana genome as a reference. 
The final assembly resulted in a genome size of 497.4 Mb with 
scaffolds N50 of 17.8 Mb (Fig. 2a; supplementary fig. S2A and 
table S1, Supplementary Material online). To assess the gen
ome’s completeness, we employed a Benchmarking 
Universal Single-Copy Orthologs (BUSCO) analysis, utilizing 
the lepidoptera_odb10 data set. The resulting assembly 
demonstrated a high level of completeness, with 96.8% of 
the single-copy gene set from BUSCO being found in the 
M. mineus genome (Fig. 2a; supplementary fig. S2B and 
table S2, Supplementary Material online). In addition, 
99.53% of the short reads mapped to the final assembled 
genome, highlighting completeness of the genome. The final 
M. mineus assembly also aligned with the B. anynana genome 
and showed high level of synteny (Fig. 2b).

The genome was repeat-masked using Redmask and was 
annotated using Braker. For annotation, the model was 
trained using an arthropod protein database along with pro
tein sequences from closely related species (see Materials and 
Methods for details). The annotation process yielded a total 
of 18,360 genes accompanied by 20,967 transcripts. The 

FIG. 1.—Representative images of the two seasonal forms of 
M. mineus, showing dorsal (left) and ventral sides (right) of female and 
male wings. The species is sexually dimorphic, and males can be distin
guished by the presence of silver scales (at the base of the dorsal hindwing 
and ventral forewing and) and hair pencils (at the base of the dorsal hind
wing) on their wings. Dry-season forms have reduced ventral eyespots in 
both sexes.
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protein sequence from the genome annotation shows 97% 
completeness with 84% of the single copy and 13% dupli
cated copy of BUSCO gene set (supplementary fig. S2B, 
Supplementary Material online).

Conclusion
Here, we present a high-quality draft genome assembly of 
M. mineus, a promising model system for studying pheno
typic plasticity in response to environmental cues, as well as 
sexual dimorphism. Our assembly placed 93% of the 
497.4 Mb genome into 28 chromosomal super-scaffolds, 
with an N50 of 17.8 Mb. The assembled genome is highly 
complete, as validated by BUSCO, and ordered similarly 
to other lepidopteran genomes. We successfully annotated 
20,967 protein-coding transcripts. This genome assembly 
serves as a valuable resource for ongoing and future com
parative studies on eyespot size plasticity, as well as broader 
studies of wing pattern evolution, utilizing M. mineus as a 
model system.

Materials and Methods

DNA Extraction and Sequencing

A female M. mineus specimen was collected from 
Clementi Forest, Singapore, under the permission from 
the National Parks Board (permit ID: NP/RP14-063-6a). 

Species identification was based on The Butterflies of the 
Malay Peninsula, 4th edition (Corbet and Pendlebury 
1992). The thorax (including legs) and head regions of 
the specimen were used to extract HMW DNA. The extrac
tion was performed using the Monarch HMW DNA 
Extraction Kit (T3060S), following the manufacturer’s user 
manual. The quantity and quality of the extracted HMW 
DNA were assessed using a NanoDrop and Qubit.

Library preparation and sequencing were conducted by 
Novogene in Singapore. Nanopore library preparation was 
performed using the Ligation Sequencing Kit for gDNA 
(SQK-LSK114) following the user’s protocol. Sequencing 
was carried out on a FLO-PRO002 cell in the PromethION ma
chine, and base calling was performed using Guppy 6.5.7. 
Illumina short-read (2 × 150 bp) paired-end library prepar
ation was done by Novogene, Singapore, and sequencing 
was carried out using Illumina NovaSeq 6000 sequencer.

De Novo Genome Assembly

Initial genome assembly was performed using the Flye 
(v2.9.2-GCC-11.3.0) assembler (Kolmogorov et al. 2019) 
and the wtdbg2 assembler (Ruan and Li 2020) separately. 
Flye was run with the default settings, with polisher iter
ation set to 1, while wtdbg2 (v2.5) was run with its default 
settings. For both assemblers, the genome size was set to 
500 Mb, based on the genome size of the closely related 

FIG. 2.—Assembly statistics and Circos plot of genome alignment between M. mineus and B. anynana. a) Genome statistics with BUSCO score for the 
M. mineus_v0.6 assembly. b) Circos plot for the alignment after super-scaffolding the multiple separate M. mineus contigs shows a high level of synteny 
between the two genomes. Colored blocks are B. anynana scaffolds (chromosomes), and white blocks are M. mineus contigs and scaffolds. The ribbon lines 
show the orthologs of B. anynana sequences in the M. mineus genome.
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species B. anynana. The two genome assemblies were 
merged using quickmerge (Chakraborty et al. 2016), with 
wtdbg2 as the reference assembly and the Flye assembly 
as the query. Heterozygosity and duplication in the assem
bly were removed using purge_haplotigs (Roach et al. 
2018), keeping only the haploid contigs. The output assem
bly from purge_haplotigs was polished with two rounds of 
racon (v1.5; Vaser et al. 2017) and medaka (https://github. 
com/nanoporetech/medaka) using the long reads and fur
ther polished with short reads using POLCA (Zimin and 
Salzberg 2020). Lepidoptera genomes are highly syntenic 
and ordered (D’Alençon et al. 2010; Traut et al. 2023). The 
draft assembly was checked for putative misassembly using 
ragtag_correct (Alonge et al. 2022) using B. anynana genome 
as reference (Saccheri et al. 2023) and the long reads. 
Ragtag_correct using the long reads mapped to the genome 
validates the misassemblies identified between reference 
genome and query genome and breaks the assembly when 
at breakpoints with very low or very high coverage. The 
corrected genome was scaffolded in two steps by first 
using Scaffolding Assemblies with Multiple Big Align
ments (SAMBA), which uses long read to improve the con
tiguity of the contigs. This was followed by scaffolding 
using chromosome_scaffolder tools in MaSuRCA assem
bler with B. anynana genome as a reference (Zimin et al. 
2013; Zimin and Salzberg 2022). The completeness of 
the genome at each step was assessed using BUSCO scores 
(Simão et al. 2015; supplementary table S1 and fig. S2B, 
Supplementary Material online).

Repeat Masking and Genome Annotations

The genome was repeat-masked using Redmask (https:// 
github.com/nextgenusfs/redmask). The repeat-masked 
genome was annotated using the Braker2 automated pipe
line (Stanke et al. 2006, 2008; Hoff et al. 2016, 2019; Brůna 
et al. 2021). We utilized the Arthropoda protein data set 
from OrthoDB v.10 (Kriventseva et al. 2019), along with 
protein sequences from B. anynana, Junonia orithya, and 
Bombyx mori, to train the model and predict gene struc
tures within the genome. We used the protein sequences 
from the three above species for this annotation because 
their genomes are nearly complete and have high gene 
completeness. Functional annotation of the predicted 
genes was performed using eggNOG-mapper v.2.1.12 
(Cantalapiedra et al. 2021) against the eggNOG arthropod 
database v.5.0.1 (Huerta-Cepas et al. 2019) via the 
Diamond BLAST tool (Buchfink et al. 2014).

Synteny Analysis

We used nucmer from mummer4 (Marçais et al. 2018) to 
align our M. mineus genome to 28 chromosomes of B. any
nana genome and visualized the synteny in R using scripts 
from Tunstrom et al. (2022).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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