

Eco-evo-devo advances on seasonal plasticity of butterfly eyespots
Short Title: eco-evo-devo of eyespot plasticity

Shen Tian, Antónia Monteiro

PII: S2214-5745(26)00021-0

DOI: <https://doi.org/10.1016/j.cois.2026.101505>

Reference: COIS101505

To appear in: *Current Opinion in Insect Science*

Please cite this article as: Shen Tian and Antónia Monteiro, Eco-evo-devo advances on seasonal plasticity of butterfly eyespots
Short Title: eco-evo-devo of eyespot plasticity, *Current Opinion in Insect Science*, (2026)
doi:<https://doi.org/10.1016/j.cois.2026.101505>

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: <https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article>. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2026 Published by Elsevier Inc.

Eco-evo-devo advances on seasonal plasticity of butterfly eyespots

Short Title: eco-evo-devo of eyespot plasticity;

Shen Tian¹ and Antónia Monteiro^{2,3}

1) Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA

2) Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore

3) Theoretical Sciences Visiting Program (TSVP), Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan.

Emails: tianshenbio@gmail.com and antonia.monteiro@nus.edu.sg (co-corresponding authors)

Abstract

Seasonal variation in butterfly wing color patterns is a classic model system of adaptive phenotypic plasticity. While decades of studies provided insights on the underlying ecological roles and physiological regulation of this adaptation, recent advances detail how plasticity develops at the transcriptomic level and evolves at the genomic level. Here, we synthesize these recent advances focusing on wing eyespot size plasticity in the subfamily Satyrinae (Lepidoptera, Nymphalidae) and the model species *Bicyclus anynana*, the most intensively studied system. We also propose future directions in the field.

Keywords: plasticity; butterfly; eco-evo-devo; evolution; eyespots

Introduction

Phenotypic plasticity describes the ability of organisms to produce divergent phenotypes in response to environmental heterogeneity, such as alternating seasons [1-3]. Seasonal variation in butterfly wing color patterns is a classic example of phenotypic plasticity. Here, environmental cues experienced during development produce season-specific modifications in a butterfly's wing appearance, including changes in background wing color, color contrast of pattern elements, and/or size of pattern elements such as eyespots [4-10]. These changes are adaptive to seasonal changes in resting background and predator guilds [11-13], mating strategies [14], and/or the regulation of body temperatures [15, 16].

Recent studies on eyespots in satyrid butterflies have deepened our understanding of this plastic system from an integrated ecological, evolutionary, and developmental (Eco-Evo-Devo) perspective. These studies have investigated the cues that can trigger the plastic size response, improved our understanding of systemic and eyespot-specific developmental responses to these cues, pinpointed the origin of the plastic response on a phylogeny, identified genomic changes behind the origination and adjustment of plastic responses, and explored the conservation potential of plasticity to cope with climate change. Below we summarize our current understanding of eyespot size plasticity and highlight recent discoveries.

Ecological significance

In satyrid butterflies, eyespots on the ventral (exposed) hindwing surfaces exhibit seasonal plasticity in their size, a classic example of a seasonal adaptation. In the model *B. anynana*, this seasonal plasticity is triggered primarily by environmental temperature associated with alternating seasons in tropical Africa [4, 17]. During the warm wet season, eyespots are large, and during the cool dry season, eyespots are small [18, 19] (Fig. 1a). This plasticity is adaptive: Large eyespots help deflect prevalent invertebrate predator attacks to the wing margin in the wet season, and small eyespots are cryptic to prevalent vertebrate predators in the dry season, helping the butterfly remain undetected against brown leaf litter [11, 12].

Across satyrids, hidden eyespots on both sides of the forewing and those on dorsal surfaces show different patterns of size plasticity [18, 20-22] and also number plasticity [23], that are best explained by their role in mate signaling [14]. Ventral forewing (hidden) eyespots are less plastic in *B. anynana* [18], and those on the hidden dorsal side of the wing can have opposite patterns of size plasticity in *Mycalesis* butterflies - becoming smaller with increasing temperature [20]. In addition, eyespot number is also plastic in *B. anynana* females, where higher temperature leads to fewer eyespots on dorsal hindwings; males adjust to these changes by learning to prefer females with fewer eyespots [23].

Evolutionary patterns

The evolutionary history of eyespot plasticity has been reconstructed by placing evidence from field observations and common garden experiments on a well-resolved butterfly phylogeny. Based on field collections and museum vouchers, multiple recent studies aligned the observed eyespot size variation with complex seasonal variation in natural habitats, and showed that seasonal plasticity in eyespot size is widely observed within the *Bicyclus* genus [24, 25]. Common garden experiments further elucidated that such variation can be triggered by a common environmental cue, temperature, and such temperature-mediated plasticity was estimated to have originated ~60 million years ago in a single clade, Satyrinae [19, 20, 26-28], the largest nymphalid subfamily with ~2700 extant species [29, 30] (Fig 1b). This type of plasticity is conserved even among species from aseasonal habitats without obvious temperature fluctuations [20, 27], suggesting that eyespot plasticity might have originated as an ancestral adaptation with strong fitness benefits, preventing it from degenerating easily in populations that subsequently colonized weakly seasonal habitats [27]. In addition, stronger regional seasonality is associated with higher plasticity levels [24, 31], suggesting that plasticity can evolve quantitatively in response to local conditions.

Physiological regulation

Inductive cues. The development of plasticity requires the perception and integration of environmental cues. While temperature is generally used to regulate eyespot size plasticity across satyrids [32], a series of recent studies demonstrate that a complex suit of other cues, such as humidity, host plants, food quality, day/night temperature alternations, and/or their interactions, also play a role [25, 28, 33-36]. Alternative cue use appears population/species-specific [28, 33, 34], and in certain species, such as *Melanitis leda*, well correlated with cue reliability in predicting upcoming seasons [34]. These studies reveal a complex network of interacting factors underlying satyrid eyespot size plasticity, and highlight how species, and populations within single species have gained, lost, and/or integrated sensitivities to different cues to alter eyespot development.

Ecdysone signaling. In butterflies, external cues are often integrated via endocrine signaling which coordinates the development of multiple plastic traits (reviewed in [37]). In the model satyrid *B. anynana*, temperature affects titers of a steroid hormone, 20-hydroxyecdysone (20E), during the larval-pupal transition, which mediates the development of eyespot size plasticity [18, 22, 38] (Fig. 1c). The expression of *Ecdysone Receptor* (*EcR*) in eyespot center cells during the larval stage may, via the promotion of local cell division, explain localized effects of 20E signaling in eyespot development [18, 22]. The absence of *EcR* expression in the centre of forewing eyespots, during the 20E-sensitive late larval wandering stage, may contribute to the different sensitivity to 20E and lower levels of plasticity observed in these eyespots in this species [18]. However, temperature-induced 20E dynamics, as well as the expression of *EcR* in eyespots, are pre-adaptations, but insufficient to explain how temperature-mediated eyespot size plasticity evolved on a phylogeny [19]. Additional genetic mechanisms are required to sensitize eyespots to 20E signaling to effect localized developmental responses.

Developmental response

Molecular responses. External cues, via endocrine signaling, instruct development by inducing extensive downstream molecular responses (reviewed in [39]). Recent studies in butterflies uncovered cue-induced molecular changes across various morphological [40-42], physiological [43, 44], life-history [45], and behavioral traits [46-48]. While alterations in gene expression levels is a well-known response to environmental cues, recent studies started to describe less explored changes in post-transcriptional [40, 43-45] and post-translational [41] processes. For example, extensive changes in gene expression, alternative splicing, and microRNA (miRNA)-mediated gene silencing are taking place in whole wings in response to temperature in *B. anynana* [40] (Fig. 1d). In addition, largely non-overlapping, functionally divergent sets of genes are either differentially expressed or differentially spliced across seasonal regimes (Fig. 1d), emphasizing complementary rather than redundant roles of gene expression and alternative splicing in developmental plasticity [40, 43], consistent with other plastic systems [49].

Systemic vs trait-specific responses. Recent studies have started to dissect how different tissues in the same body respond to the same environmental cue at the molecular level. One study sampled laser-dissected eyespot central cells and adjacent control wing tissue across seasonal forms of *B. anynana* [40], and found that most genes responded systemically across both tissue types, whilst a smaller subset was eyespot-specific (Fig. 1e). One of these eyespot-specific plastic genes, *Antennapedia* (*Antp*), which had not been picked up from a previous whole wing transcriptome study [40], turned out to be a key regulator of eyespot size plasticity - demonstrated by reduced plasticity levels when *Antp* was disrupted across two satyrids [50] (Fig. 1e). Contrary to the findings above, largely trait-specific responses were observed across distant body parts, such as adult thorax versus abdomen [44, 51]. Overall, these studies suggest that molecular plasticity is largely systemic across cells within a similar tissue, while trait-specific molecular responses (within tissues) are more likely to be consequential for the trait of interest. This highlights the importance of resolving molecular plasticity at a trait-specific resolution to pinpoint genes with localized functional relevance.

Genomic drivers

Intraspecific variation. Identifying genomic loci associated with intraspecific variation in plasticity levels is essential to understand the evolutionary origin and genetic underpinnings of plasticity (reviewed in [39]), but recent genotype-phenotype association studies in butterflies have had mixed outcomes [31, 52]. A recent study focusing on diverging levels of eyespot size plasticity among *B. anynana* populations across an ecotone-rainforest gradient found no obvious genome-wide variation, probably due to frequent gene flow among the habitats that homogenized most parts of the genome [31, 53]. This limitation was overcome in a study on *Junonia coenia*, a non-satyrid with seasonal plasticity in background wing color, not eyespot size. In this species, artificial selection was performed on a base population to accentuate plasticity levels in wing color – to flatten and increase reaction norms [52]. Subsequent crosses and a genome-wide association study identified multiple causal loci, including a hotspot miRNA locus [52, 54-56]. These studies suggest that association studies are feasible to map plasticity loci, but artificial selection may be required to enrich causal alleles, as plasticity is often polygenic [57, 58]. It is uncertain, however, whether genetic results from studies that used artificial selection actually inform us about how plasticity evolves in natural populations.

Interspecific variation. A long-standing question in the field is how plasticity originates on a phylogeny – where a clade of species is plastic relative to the non-plastic outgroup. *Antp* was identified to boost the level of temperature-mediated eyespot size plasticity in Satyrinae [50]. Notably, the origin of temperature-mediated eyespot size plasticity at the base of Satyrinae [19] coincides with the evolutionary origin of *Antp* expression in butterfly eyespots [59-61]. In addition, *Antp* recruitment to eyespots coincides with the origin of a novel promoter in satyrid genomes that activates *Antp* expression specifically in eyespots [50] (Fig. 1f). This illustrates that a taxon-specific cis-regulatory innovation on a conserved developmental gene may have fueled or enabled the evolution of adaptive phenotypic plasticity in a large phylogenetic clade of organisms, the satyrids (Fig. 1f).

Conservation potential

Little is known whether adaptive phenotypic plasticity can facilitate adaptation to climate change. Combining transcriptomic and genomic analysis, two recent studies on *B. anynana* [43, 44], and one on *Pieris napi* [45] suggest that in seasonal habitats, strong purifying selection that aligns plastic genes with recurring seasonality leads to erosion of genetic variation in those genes. This could limit the evolutionary potential of these populations to cope with further environmental change. On the flipside, relaxed selection in aseasonal habitats may allow populations with inherent plasticity to accumulate additional genetic variation [27]. Unexpected environmental perturbations may release such inherent plasticity to cope with climate change [39]. Future studies are needed to better understand how plasticity impacts short- and long-term survival of populations with diverse evolutionary histories in the era of ongoing climate change.

Conclusions & Future directions

An Eco-Evo-Devo model of plasticity. Past and recent advances on eyespot size plasticity have illustrated how plasticity can be created by genomic innovations, how these produce downstream molecular responses, and how these responses are physiologically regulated and modulated by diverse ecological conditions, making it one of the most well-studied Eco-Evo-Devo model systems of adaptive phenotypic plasticity. Swiftly evolving technologies and

methodologies could help understand proximate and ultimate mechanisms in this model system at an unprecedented resolution. Below we propose some future directions, focusing on Evo-Devo aspects.

Physiological regulation. It is still poorly understood how different cues are integrated to produce similar plastic responses in eyespot size. A recent study performed shift-experiments and mapped a humidity-sensitive stage in a satyrid, *Mycalesis mineus*, to the short larval-pupal transition, which is the same window of sensitivity to temperature in *B. anynana* [33]. This suggests that titers of the same (or a different) hormone, are likely altered via different cues within the same developmental window across Satyrinae. To test this, it is important to measure the titers of 20E and/or other insect hormones at the identified window, and test whether these changes are causal using hormone agonist/antagonist injections. These experiments can be performed across multiple satyrids with diverse cue use strategies to understand the extent of conservation of such physiological regulations on a phylogeny.

Genomic loci of plasticity. Little is known about the genomic loci underlying diverging levels of plasticity in eyespot size in any satyrid. Genotype-phenotype association analysis could potentially map the genomic loci underlying intraspecific variation in plasticity levels in eyespot size. This could be performed in parallel across deeply diverged satyrids to understand whether any hotspot loci appear as recurrent targets of selection. Similar experiments can focus on alternative cues, elucidating how genetic mechanisms of plasticity diverge in response to different ecological conditions. Recent advances in color pattern quantification using convolutional neural networks offer great potential to facilitate large-scale morphological measurements in such association studies [62-64].

Evolution of plasticity GRNs. Understanding gene regulatory networks (GRNs) underlying plasticity is essential to unravel the detailed genetic mechanisms of how plasticity evolves. The expression of *Antp* in satyrid eyespots is conserved but its effects on eyespot plasticity levels differ across the clade [50], suggesting evolution in the underlying GRNs. Rapid advances in single-cell multi-omics and deep learning models [65] provide new powerful tools to resolve how molecular profiles (gene expression, open chromatin) can be assembled in cell-type-specific GRNs, such as in *Antp*-positive eyespot center cells, and how such GRNs respond to cues. It is possible that temperature-sensitive expression of *Antp* is mediated by 20E signaling. To test this, *EcR* binding profiles can be generated using ChIP-seq. Gene expression responsiveness of *Antp* can be tested following 20E agonist/antagonist injections. Regulatory connections between *EcR* and *Antp* can be examined by disrupting one gene and examining the expression of the other. Comparative analyses, spanning satyrid species, or different eyespots from the same satyrid with different patterns of plasticity [18, 20], can shed light on how environmental responsiveness of eyespot GRNs evolve under different selective regimes.

Broader study systems. Many butterflies from the tribe *Junoniini* (Lepidoptera: Nymphalidae) also display taxon/species-specific seasonal plasticity in a suit of morphological traits including eyespot size [19, 66]. Investigations in these systems can highlight the extent that molecular mechanisms of eyespot size plasticity in Satyrinae are used in *Junoniini*. Also, in both *Junoniini* and Satyrinae, seasonal plasticity usually involves coordinated responses across morphological, behavioral, and life-history traits [20, 46, 66]. The extent that evolution of plasticity across multiple traits can be achieved via changes on small-effect modular loci, or

large-effect pleiotropic loci is unknown. Future studies on these extended systems should be undertaken using parallel approaches.

Acknowledgements

ST was supported by a Hargitt Postdoctoral Fellowship, and a startup grant to Anyi Mazo-Vargas from Duke University. AM was supported by the National Research Foundation (NRF) Singapore, under its CRP and Investigatorship funding programme (NRF-CRP20-2017-0001 and NRF-NRFI05-2019-0006 Awards) and by the Theoretical Sciences Visiting Program (TSVP) at the Okinawa Institute of Science and Technology Graduate University.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

* of special interest

** of outstanding interest

1. West-Eberhard, M.J., *Phenotypic plasticity and the origins of diversity*. Annual review of Ecology and Systematics, 1989. **20**(1): p. 249-278.
2. Stearns, S.C., *The evolutionary significance of phenotypic plasticity*. Bioscience, 1989. **39**(7): p. 436-445.
3. Pfennig, D.W., et al., *Phenotypic plasticity's impacts on diversification and speciation*. Trends in Ecology & Evolution, 2010. **25**(8): p. 459-467.
4. Brakefield, P.M., F. Kesbeke, and P.B. Koch, *The regulation of phenotypic plasticity of eyespots in the butterfly Bicyclus anynana*. The American Naturalist, 1998. **152**(6): p. 853-860.
5. Brakefield, P.M. and N. Reitsma, *Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi*. Ecological Entomology, 1991. **16**: p. 291-303.
6. Brakefield, P.M. and T.B. Larsen, *The evolutionary significance of dry and wet season forms in some tropical butterflies*. Biological Journal of the Linnean Society, 1984. **22**(1): p. 1-12.
7. Smith, K.C., *The effects of temperature and daylength on the rosa polyphenism in the buckeye butterfly, Precis coenia (Lepidoptera: Nymphalidae)*. Journal of Research on the Lepidoptera, 1993. 30(3-4):p.225-236.
8. Baudach, A. and A. Vilcinskas, *The European map butterfly Araschnia levana as a model to study the molecular basis and evolutionary ecology of seasonal polyphenism*. Insects, 2021. **12**(4): p. 325.
9. Stoehr, A.M. and H. Goux, *Seasonal phenotypic plasticity of wing melanisation in the cabbage white butterfly, Pieris rapae L.(Lepidoptera: Pieridae)*. Ecological Entomology, 2008. **33**(1): p. 137-143.
10. Fenner, J., et al., *Seasonal polyphenism of wing colors and its influence on sulphur butterfly diversification*. bioRxiv, 2022: p. 2022.08. 10.503521.
11. Lyytinen, A., et al., *Does predation maintain eyespot plasticity in Bicyclus anynana?* Proceedings of the Royal Society of London. Series B: Biological Sciences, 2004. **271**(1536): p. 279-283.

12. Prudic, K.L., et al., *Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity*. Proceedings of the Royal Society B: Biological Sciences, 2015. **282**(1798): p. 20141531.
13. van Bergen, E. and P. Beldade, *Seasonal plasticity in anti-predatory strategies: Matching of color and color preference for effective crypsis*. Evolution Letters, 3 (3), 313–320. 2019, John Wiley & Sons, Ltd.
14. Prudic, K.L., et al., *Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation*. Science, 2011. **331**(6013): p. 73-75.
15. Järvi, V.V., K.R. Van Der Burg, and R.D. Reed, *Seasonal plasticity in Junonia coenia (Nymphalidae): Linking wing color, temperature dynamics, and behavior*. The Journal of the Lepidopterists' Society, 2019. **73**(1): p. 34-42.
16. Stoehr, A.M., et al., *Resource -based trade -offs and the adaptive significance of seasonal plasticity in butterfly wing melanism*. Ecology and Evolution, 2024. **14**(5): p. e11309.
17. Kooi, R.E. and P.M. Brakefield, *The critical period for wing pattern induction in the polyphenic tropical butterfly Bicyclus anynana (Satyrinae)*. Journal of insect physiology, 1999. **45**(3): p. 201-212.
18. Monteiro, A., et al., *Differential expression of ecdysone receptor leads to variation in phenotypic plasticity across serial homologs*. PLoS Genetics, 2015. **11**(9): p. e1005529.
- 19*. Bhardwaj, S., et al., *Origin of the mechanism of phenotypic plasticity in satyrid butterfly eyespots*. Elife, 2020. **9**: p. e49544.

This study performed the largest common garden experiments on temperature-mediated butterfly eyespot size plasticity, and mapped its evolutionary origin to the base of Satyrinae. It also demonstrated that temperature-mediated 20E dynamics, and the expression of EcR in eyespots are pre-adaptations but insufficient to explain the evolution of eyespot size plasticity on the phylogeny.

20. van Bergen, E., et al., *Conserved patterns of integrated developmental plasticity in a group of polyphenic tropical butterflies*. BMC Evolutionary Biology, 2017. **17**: p. 1-13.
21. Huq, M., S. Bhardwaj, and A. Monteiro, *Male Bicyclus anynana butterflies choose females on the basis of their ventral UV-reflective eyespot centers*. Journal of insect science, 2019. **19**(1): p. 25.
22. Bhardwaj, S., et al., *Sex differences in 20-hydroxyecdysone hormone levels control sexual dimorphism in Bicyclus anynana wing patterns*. Molecular Biology and Evolution, 2018. **35**(2): p. 465-472.
23. Westerman, E.L., et al., *Mate preference for a phenotypically plastic trait is learned, and may facilitate preference-phenotype matching*. Evolution, 2014. **68**(6): p. 1661-1670.
- 24*. Halali, S., P.M. Brakefield, and O. Brattström, *Phenotypic plasticity in tropical butterflies is linked to climatic seasonality on a macroevolutionary scale*. Evolution, 2024. **78**(7): p. 1302-1316.

This study quantified eyespot size plasticity using museum specimens with a high phylogenetic resolution, and mapped observed plasticity to modeled regional seasonality, showing correlated patterns of plasticity levels and seasonality on a macroevolutionary scale.

25. Mallick, S., et al., *Seasonal plasticity in sympatric *Bicyclus* butterflies in a tropical forest where temperature does not predict rainfall*. *Biotropica*, 2024. **56**(5): p. e13365.
26. Molleman, F., et al., *Larval growth rate is not a major determinant of adult wing shape and eyespot size in the seasonally polyphenic butterfly *Melanitis leda**. *PeerJ*, 2024. **12**: p. e18295.
27. Oostra, V., et al., *On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection*. *Ecology and Evolution*, 2014. **4**(13): p. 2654-2667.
- 28*. Prasannakumar, I., et al., *Development time integrates temperature and host plant cues for eyespot size in three tropical satyrine butterflies*. *Journal of Insect Physiology*, 2025: p. 104814.

Focusing on three deeply diverged satyrids, this study demonstrates how interacting cues, temperature and host plant, impact eyespot size plasticity, and highlight flexible cue use across sympatric species.

29. Chazot, N., et al., *Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies*. *Nature Communications*, 2021. **12**(1): p. 5717.
30. Peña, C., et al., *Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data*. *Molecular phylogenetics and Evolution*, 2006. **40**(1): p. 29-49.
- 31*. Zhen, Y., et al., *Strong habitat-specific phenotypic plasticity but no genome-wide differentiation across a rainforest gradient in an African butterfly*. *Evolution*, 2023. **77**(6): p. 1430-1443.

This study illustrates how plasticity can evolve quantitatively along a habitat gradient, highlighting the potential of plasticity to evolve to cope with regional environmental conditions.

32. Brakefield, P.M. and N. Reitsma, *Phenotypic plasticity, seasonal climate and the population biology of *Bicyclus* butterflies (Satyridae) in Malawi*. *Ecological Entomology*, 1991. **16**(3): p. 291-303.
33. Yumnam, T., et al., *Contrasting mechanisms for using humidity as cue for seasonal polyphenism in two tropical butterflies*. *bioRxiv*, 2025: p. 2025.10. 14.682489.
34. Prasannakumar, I., et al., *Local adaptations in wing-pattern and life history trait plasticity in a butterfly: humidity as a cue where temperature is unreliable*. *bioRxiv*, 2025: p. 2025.10. 15.682538.
35. van Bergen, E., et al., *Thermal plasticity in protective wing pigmentation is modulated by genotype and food availability in an insect model of seasonal polyphenism*. *Functional Ecology*, 2024. **38**(8): p. 1765-1778.
36. Rodrigues, Y.K., et al., *Additive and non-additive effects of day and night temperatures on thermally plastic traits in a model for adaptive seasonal plasticity*. *Evolution*, 2021. **75**(7): p. 1805-1819.
- 37*. van der Burg, K.R. and R.D. Reed, *Seasonal plasticity: how do butterfly wing pattern traits evolve environmental responsiveness?* *Current Opinion in Genetics & Development*, 2021. **69**: p. 82-87.

This review article summarized recent advances on how butterfly wing color patterns become sensitive to cues via ecdysone signaling, and propose how changes in chromatin responsiveness to ecdysone signaling may impact the evolution of plasticity.

38. Mateus, A.R.A., et al., *Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility*. BMC Biology, 2014. **12**(1): p. 1-15.

39. Lafuente, E. and P. Beldade, *Genomics of developmental plasticity in animals*. Frontiers in genetics, 2019. **10**: p. 720.

40*. Tian, S. and A. Monteiro, *A transcriptomic atlas underlying developmental plasticity of seasonal forms of *Bicyclus anynana* butterflies*. Molecular biology and evolution, 2022. **39**(6): p. msac126.

This study produced a comprehensive atlas of gene expression, alternative splicing, and miRNA response to temperature across wing development, highlighting extensive post-transcriptional gene regulation in the plastic response.

41. He, J.-W., et al., *Integrated analysis of transcriptome and proteome to reveal pupal color switch in *Papilio xuthus* butterflies*. Frontiers in Genetics, 2022. **12**: p. 795115.

42. Daniels, E.V., et al., *Extensive transcriptional response associated with seasonal plasticity of butterfly wing patterns*. Molecular Ecology, 2014. **23**(24): p. 6123-6134.

43**. Steward, R.A., et al., *Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change*. Nature Communications, 2022. **13**(1): p. 755.

This study performed coordinated analysis on both gene expression and alternative splicing across seasonal regimes, showing that plasticity in gene splicing is more susceptible to erosion of genetic variation than plasticity in gene expression. This, together with two papers below, highlight genetic constraints of phenotypic plasticity in adapting populations to climate change.

44. Oostra, V., et al., *Strong phenotypic plasticity limits potential for evolutionary responses to climate change*. Nature communications, 2018. **9**(1): p. 1005.

45. Steward, R.A., et al., *Genetic constraints in genes exhibiting splicing plasticity in facultative diapause*. Heredity, 2024. **132**(3): p. 142-155.

46. Hirzel, G.E., et al., *Synchronous seasonal plasticity in coloration, behaviour and visual gene expression in a wild butterfly population*. Functional Ecology, 2024.

47. Dion, E., et al., *Butterfly brains change in morphology and in gene splicing patterns after brief pheromone exposure*. bioRxiv, 2024: p. 2024.10.02.615994.

48. Connahs, H., et al., *The yellow gene regulates behavioural plasticity by repressing male courtship in *Bicyclus anynana* butterflies*. Proceedings of the Royal Society B, 2022. **289**(1972): p. 20212665.

49. Grantham, M.E. and J.A. Brisson, *Extensive differential splicing underlies phenotypically plastic aphid morphs*. Molecular Biology and Evolution, 2018. **35**(8): p. 1934-1946.

50**. Tian, S., et al., *A novel Hox gene promoter fuels the evolution of adaptive phenotypic plasticity in wing eyespots of satyrid butterflies*. Nature Ecology & Evolution, 2025: p. 1-13.

This study integrates comparative genomics, tissue-specific transcriptomes and gene editing, to show how a novel promoter that emerged in satyrid genomes confers novel gene expression patterns and fueled the evolution of temperature-mediated eyespot size plasticity in this clade. It illustrates how genomic changes can facilitate the evolution of plasticity in a large clade of species, shedding light on its evolutionary origin.

51. Kijimoto, T., et al., *The nutritionally responsive transcriptome of the polyphenic beetle *Onthophagus taurus* and the importance of sexual dimorphism and body region*.

Proceedings of the Royal Society B: Biological Sciences, 2014. **281**(1797): p. 20142084.

52*. van der Burg, K.R., et al., *Genomic architecture of a genetically assimilated seasonal color pattern*. Science, 2020. **370**(6517): p. 721-725.
This study, focusing on butterfly background color seasonal plasticity, demonstrates that artificial selection, combined with phenotype-genotype association analysis, is feasible to map genomic loci underlying interspecific variation in plasticity levels.

53. van Bergen, E. and V. Oostra, *Digest: Habitat seasonality drives evolutionary change in plasticity in Bicyclus butterflies*. 2023, Oxford University Press US.

54. Livraghi, L., et al., *A long noncoding RNA at the cortex locus controls adaptive coloration in butterflies*. Proceedings of the National Academy of Sciences, 2024. **121**(36): p. e2403326121.

55. Fandino, R.A., et al., *The ivory lncRNA regulates seasonal color patterns in buckeye butterflies*. Proceedings of the National Academy of Sciences, 2024. **121**(41): p. e2403426121.

56. Tian, S., et al., *A microRNA is the effector gene of a classic evolutionary hotspot locus*. Science, 2024. **386**(6726): p. 1135-1141.

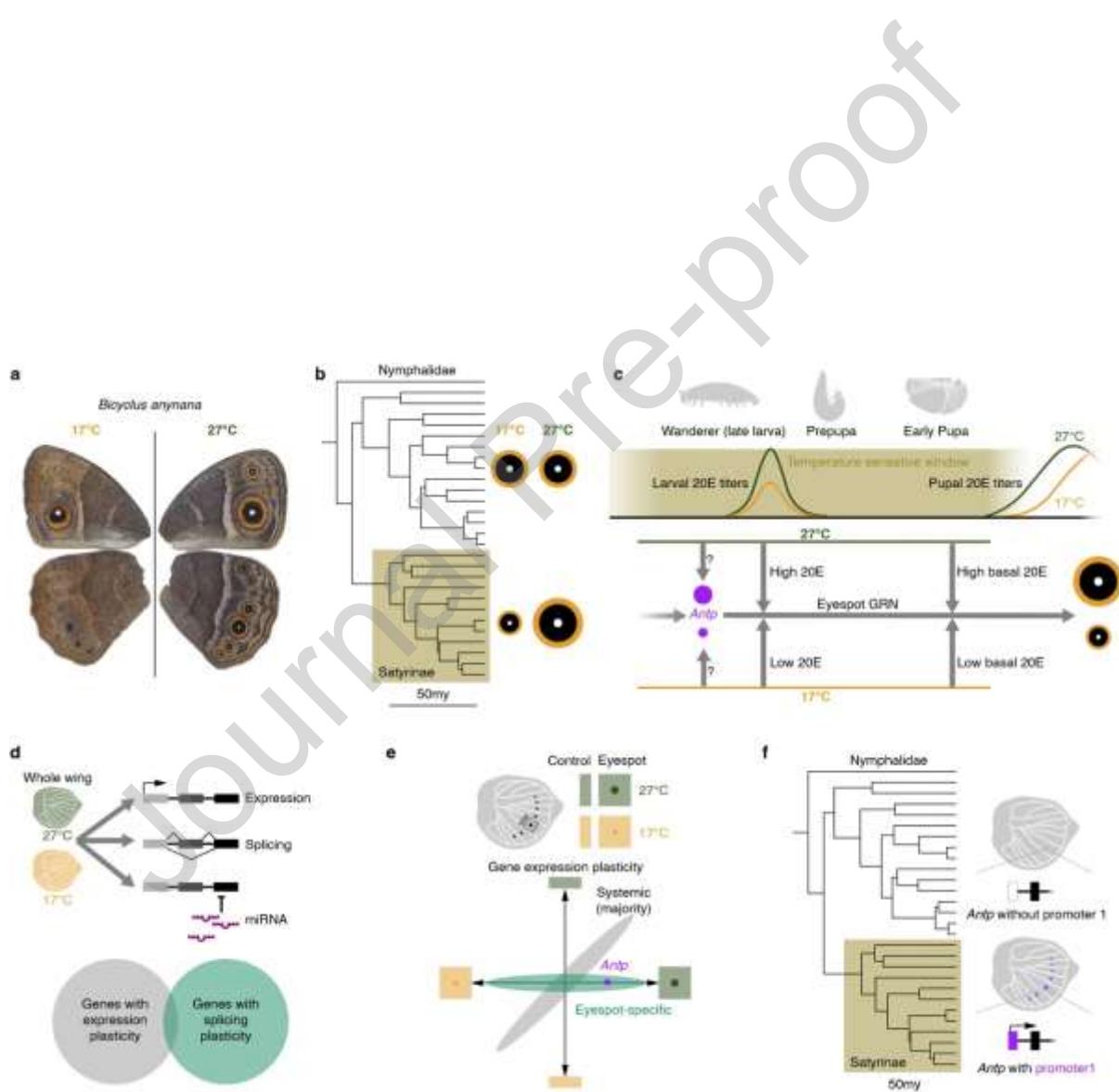
57. Lafuente, E., D. Duneau, and P. Beldade, *Genetic basis of thermal plasticity variation in Drosophila melanogaster body size*. PLoS Genetics, 2018. **14**(9): p. e1007686.

58. Lafuente, E., D. Duneau, and P. Beldade, *Genetic basis of variation in thermal developmental plasticity for Drosophila melanogaster body pigmentation*. Molecular Ecology, 2024. **33**(6): p. e17294.

59. Saenko, S.V., M.S. Marialva, and P. Beldade, *Involvement of the conserved Hox gene Antennapedia in the development and evolution of a novel trait*. EvoDevo, 2011. **2**: p. 1-10.

60. Shirai, L.T., et al., *Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait*. BMC Evolutionary Biology, 2012. **12**: p. 1-11.

61. Oliver, J.C., et al., *A single origin for nymphalid butterfly eyespots followed by widespread loss of associated gene expression*. 2012.


62. Royal Cuthill, J.F., et al., *Deep learning on butterfly phenotypes tests evolution's oldest mathematical model*. Science Advances, 2019. **5**(8): p. eaaw4967.

63. Cunha, C., et al., *Detection and measurement of butterfly eyespot and spot patterns using convolutional neural networks*. PLoS One, 2023. **18**(2): p. e0280998.

64. van der Bijl, W., et al., *Deep learning reveals the complex genetic architecture of male guppy colouration*. Nature Ecology & Evolution, 2025: p. 1-12.

65. Xu, J., et al., *Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data*. Nucleic Acids Research, 2025. **53**(5): p. gkaf138.

66. Clarke, J.W., *Evolutionary trends in phenotypic elements of seasonal forms of the tribe Junoniini (Lepidoptera: Nymphalidae)*, in *Diversity and evolution of butterfly wing patterns: An integrative approach*. 2017, Springer Singapore. p. 239-253.

Fig. 1. Eyespot size plasticity in satyrid butterflies. (a) A model satyrid butterfly, *Bicyclus anynana*, exhibits plasticity in the size of eyespots, especially those from ventral hindwings, in response to temperature [18]. **(b)** This mode of temperature-mediated plasticity in hindwing eyespot size is estimated to have evolved ~60 million years ago in the Satyrinae subfamily. [19]. **(c)** Temperatures experienced during the short larval-pupal transition (shaded) alter titers

of the hormone 20-hydroxyecdysone (20E), which mediate the development of eyespot plasticity [18, 38, 50]. A key eyespot size regulator, *Antennapedia* (*Antp*), shows expression plasticity specifically in eyespots early in this transition [50]. GRN, gene-regulatory network. **(d)** Temperature imposes extensive transcriptional and post-transcriptional molecular responses during whole wing development, with largely non-overlapping sets of genes exhibiting responses in gene expression and alternative splicing [40]. **(e)** When micro-dissections of eyespot and control tissues are performed it becomes clear that most of these responses are systemic; *Antp* is among the smaller set of genes showing eyespot-specific expression plasticity [50]. **(f)** A novel promoter (promoter 1) discovered in satyrid genomes activates the expression of *Antp* specifically in eyespots, and it functionally boosts temperature-mediated plasticity levels in the model *B. anynana* [50].

Declaration of interest

Both authors declare no conflict of interest in writing this review.